AN EXTENDED FIXED POINT THEOREM IN THE RATIONAL FORM IN A COMPLETE METRIC SPACE

D. V. Singh ${ }^{1}$ and Manoj Garg ${ }^{2}$
${ }^{1}$ Department of Physics, Nehru (P.G.) College, Chhibramau, Kannauj (U.P.)
${ }^{2}$ Department of Mathematics, Nehru (P.G.) College, Chhibramau, Kannauj (U.P.)

ARTICLE INFO

Article History:

Received $17^{\text {th }}$ June, 2016
Received in revised form $4^{\text {th }}$
July, 2016 Accepted $28^{\text {th }}$ August, 2016
Published online $28^{\text {th }}$ September, 2016

Abstract

The aim of this paper is to obtain a fixed point theorem in the form of rational expression. In this paper, we extended the work of Yadav [6] and then show that the results of Banach [1], Kannon[2], Reich[3], Chatterjee[4], Fisher[5] and Yadav[6] are special cases of our theorem.

INTRODUCTION

In 1922, the Polish mathematician Stefan Banach proved a theorem which ensures, under appropriate conditions, the existence and uniqueness of a fixed point. His result is called Banachs fixed point theorem. This result provides a technique for solving variety of applied problems in mathematical science and engineering. In the wide range of mathematical problems the existence of a solution is equivalent to the existence of a fixed point for a suitable map. The existence of a fixed point is therefore of paramount importance in several area of mathematics and physics. Many authors like Kannon [2], Reich [3], Chatterjee [4], Fisher [5] and Yadav [6] have extended, generalized and improved Banach fixed point theorem in different ways. The aim of this paper is to obtain a fixed point theorem in the form of rational expression.
Throughout this paper the complete metric space (X, d) is denoted by X .
Theorem: Let f be a continuous self mapping defined on a complete metric space X with
$d\left(f_{x}, f_{y}\right) \leq k_{1} \frac{d(x, f x) d(y, f y)+d(x, f y) d(y, f x)}{d(x, f x)+d(y, f y)+d(x, f y)+d(y, f x)}+s$
$\mathrm{k}_{2} \frac{\mathrm{~d}(\mathrm{x}, \mathrm{fx}) \mathrm{d}(\mathrm{y}, \mathrm{fx})+\mathrm{d}(\mathrm{y}, \mathrm{fy}) \mathrm{d}(\mathrm{x}, \mathrm{fy})}{\mathrm{d}(\mathrm{x}, \mathrm{fx})+\mathrm{d}(\mathrm{y}, \mathrm{fy})+\mathrm{d}(\mathrm{x}, \mathrm{fy})+\mathrm{d}(\mathrm{y}, \mathrm{fx})}+\mathrm{k}_{3} \frac{d(x, f x) d(x, f x)+d(x, f y) d(y, f x)}{d(x, f x)+d(x, f x)+d(x, f y)+d(y, f x)}+$
$k_{4} \frac{d(x, f x) d(x, f y)+d(y, f x) d(y, f y)}{d(x, f x)+d(y, f y)+d(x, f y)+d(y, f x)}+k_{5}[d(x, f x)+d(y, f y)]+k_{6}[d(x, f y)+d(y, f x)]+k_{7} d(x, y)$.
$\forall \mathrm{x}, \mathrm{y} \in \mathrm{X}, \mathrm{x} \neq \mathrm{y}$ and for $\mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{3}, \mathrm{k}_{4}, \mathrm{k}_{5}, \mathrm{k}_{6}, \mathrm{k}_{7} \in[0,1)$ with $\mathrm{k}_{1}+\mathrm{k}_{2}+\mathrm{k}_{3}+\mathrm{k}_{4}+4 \mathrm{k}_{5}+4 \mathrm{k}_{6}+2 \mathrm{k}_{7}<2$, then f has a unique fixed point.

Proof: Let $\mathrm{x}_{\mathrm{o}} \in \mathrm{X}$ and define a sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ in X such that $\mathrm{f}_{\mathrm{x}_{0}}^{\mathrm{n}}=\mathrm{x}_{\mathrm{n}+1} \forall \mathrm{n} \in \mathrm{I}^{+}$.
Thus we set $\mathrm{fx}_{\mathrm{n}}=\mathrm{x}_{\mathrm{n}+1}$.

Now $\quad d\left(x_{n+1}, x_{n}\right)=d\left(\mathrm{fx}_{n,} \quad f_{x_{n-1}}\right) \leq k_{1} \frac{d\left(x_{n}, f_{x_{n}}\right) d\left(x_{n-1}, f_{x_{n-1}}\right)+d\left(x_{n}, f_{x_{n-1}}\right) d\left(x_{n-1}, f_{x_{n}}\right)}{d\left(x_{n}, f_{x_{n}}\right)+d\left(x_{n-1}, f_{x_{n-1}}\right)+d\left(x_{n}, f_{x_{n-1}}\right)+d\left(x_{n-1}, f_{x_{n}}\right)}+k_{2}$ $\frac{d\left(x_{n}, f_{x_{n}}\right) d\left(x_{n-1}, f_{x_{n}}\right)+d\left(x_{n-1}, f_{x_{n-1}}\right) d\left(x_{n}, f_{x_{n-1}}\right)}{d\left(x_{n}, f_{x_{n}}\right)+d\left(x_{n-1}, f_{x_{n-1}}\right)+d\left(x_{n}, f_{x_{n-1}}\right)+d\left(x_{n-1}, f_{x_{n}}\right)}+$
$\mathrm{k}_{3} \frac{d\left(x_{n}, f_{x_{n}}\right) d\left(x_{n}, f_{x_{n}}\right)+d\left(x_{n}, f_{x_{n-1}}\right) d\left(x_{n-1}, f_{x_{n}}\right)}{d\left(x_{n}, f_{x_{n}}\right)+d\left(x_{n}, f_{x n}\right)+d\left(x_{n}, f_{x_{n-1}}\right)+d\left(x_{n-1}, f_{x_{n}}\right)}+$
$\mathrm{k}_{4} \frac{\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{f}_{\mathrm{x}_{\mathrm{n}}}\right) \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{f}_{\mathrm{x}_{\mathrm{n}-1}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{f}_{\mathrm{x}_{\mathrm{n}}}\right) \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{f}_{\mathrm{x}_{\mathrm{n}-1}}\right)}{\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{f}_{\mathrm{x}_{\mathrm{n}}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{f}_{\mathrm{x}_{\mathrm{n}-1}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{f}_{\mathrm{x}_{\mathrm{n}-1}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{f}_{\mathrm{x}_{\mathrm{n}}}\right)}+\mathrm{k}_{5}\left[\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{f}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{f}_{\mathrm{x}-1}\right)\right]+\mathrm{k}_{6}\left[\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{f}_{\mathrm{n}-1}\right)\right.$ $\left.+d\left(x_{n-1}, f x_{n}\right)\right]+k_{7} d\left(x_{n}, x_{n-1}\right)$.
Or $d\left(x_{n+1}, x_{n}\right) \leq k_{1} \frac{d\left(x_{n}, x_{n+1}\right) d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n}\right) d\left(x_{n-1}, x_{n+1}\right)}{d\left(x_{n}, x_{n+1}\right)+d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n}\right)+d\left(x_{n-1}, x_{n+1}\right)}+$
$\mathrm{k}_{2} \frac{\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right) \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right)}{\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}+1}\right)}+\mathrm{s}$
$\mathrm{k}_{3} \frac{d\left(x_{n}, x_{n+1}\right) d\left(x_{n}, x_{n+1}\right)+d\left(x_{n}, x_{n}\right) d\left(x_{n-1}, x_{n+1}\right)}{d\left(x_{n}, x_{n+1}\right)+d\left(x_{n}, x_{n+1}\right)+d\left(x_{n}, x_{n}\right)+d\left(x_{n-1}, x_{n+1}\right)}+$
$\mathrm{k}_{4} \frac{\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}+1}\right) \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)}{\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}+1}\right)}+\mathrm{k}_{5}\left[\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)\right]+$
$\mathrm{k}_{6}\left[\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}+1}\right)\right]+\mathrm{k}_{7} \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}-1}\right)$.
i.e. $d\left(x_{n+1}, x_{n}\right) \leq k_{1} \frac{d\left(x_{n}, x_{n+1}\right) d\left(x_{n-1}, x_{n}\right)}{d\left(x_{n-1}, x_{n}\right)+d\left(x_{n-1}, x_{n}\right)}+k_{2} \frac{d\left(x_{n}, x_{n+1}\right) d\left(x_{n-1}, x_{n+1}\right)}{d\left(x_{n-1}, x_{n+1}\right)+d\left(x_{n-1}, x_{n+1}\right)}+$
$k_{3} \frac{d\left(x_{n}, x_{n+1}\right) d\left(x_{n}, x_{n+1}\right)}{d\left(x_{n}, x_{n+1}\right)+d\left(x_{n}, x_{n+1}\right)}+k_{4} \frac{d\left(x_{n-1}, x_{n+1}\right) d\left(x_{n-1}, x_{n}\right)}{d\left(x_{n-1}, x_{n+1}\right)+d\left(x_{n-1}, x_{n}\right)}+k_{5}\left[d\left(x_{n}, x_{n+1}\right)+d\left(x_{n-1}, x_{n}\right)\right]+k_{6} d\left(x_{n-1}, x_{n+1}\right)+k_{7}$ $\mathrm{d}\left(\mathrm{X}_{\mathrm{n}}, \mathrm{X}_{\mathrm{n}-1}\right)$.
$\leq \frac{k_{1}}{2} d\left(x_{n}, x_{n+1}\right)+\frac{k_{2}}{2} d\left(x_{n}, x_{n+1}\right)+\frac{k_{3}}{2} d\left(x_{n}, x_{n+1}\right)+\frac{k_{4}}{2} d\left(x_{n-1}, x_{n}\right)+\quad k_{5}\left[d\left(x_{n}, x_{n+1}\right)+d\left(x_{n-1}, x_{n}\right)\right]+k_{6} d\left(x_{n-1}, x_{n+1}\right)+k_{7}$ $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}-1}\right)$.
i.e. $d\left(x_{n+1}, x_{n}\right) \leq d\left(x_{n-1}, x_{n}\right)\left[\frac{k_{4}}{2}+k_{5}+k_{6}+k_{7}\right]+d\left(x_{n+1}, x_{n}\right)\left[\frac{k_{1}}{2}+\frac{k_{2}}{2}+\frac{k_{3}}{2}+k_{5}+k_{6}\right]$.
i.e. $\mathrm{d}\left(\mathrm{x}_{\mathrm{n} 11}, \mathrm{x}_{\mathrm{n}}\right)\left[1-\left(\frac{\mathrm{k}_{1}}{2}+\frac{\mathrm{k}_{2}}{2}+\frac{k_{3}}{2}+\mathrm{k}_{5}+\mathrm{k}_{6}\right)\right] \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)\left[\frac{\mathrm{k}_{4}}{2}+\mathrm{k}_{5}+\mathrm{k}_{6}+\mathrm{k}_{7}\right]$.
i.e. $d\left(x_{n+1}, x_{n}\right) \leq \frac{\frac{k_{4}}{2}+k_{5}+k_{6}+k_{7}}{1-\frac{k_{1}}{2}-\frac{k_{2}}{2}-\frac{k_{3}}{2}-k_{5}-k_{6}} d\left(x_{n-1}, x_{n}\right)$.

Continuing this process we get $d\left(x_{n+1}, x_{n}\right) \leq\left(\frac{\frac{\mathrm{k}_{4}}{2}+\mathrm{k}_{5}+\mathrm{k}_{6}+\mathrm{k}_{7}}{1-\frac{\mathrm{k}_{1}}{2}-\frac{\mathrm{k}_{2}}{2}-\frac{\mathrm{k}_{3}}{2}-\mathrm{k}_{5}-\mathrm{k}_{6}}\right)^{\mathrm{n}} \mathrm{d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)$.

$$
\leq \mathrm{k}^{\mathrm{n}} \mathrm{~d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right) \text {. }
$$

Where $\mathrm{k}=\frac{\frac{\mathrm{k}_{4}}{2}+\mathrm{k}_{5}+\mathrm{k}_{6}+\mathrm{k}_{7}}{1-\frac{\mathrm{k}_{1}}{2}-\frac{\mathrm{k}_{2}}{2}-\frac{\mathrm{k}_{3}}{2}-\mathrm{k}_{5}-\mathrm{k}_{6}}$.
Now for $\mathrm{m}>\mathrm{n}$,
$d\left(x_{n}, x_{m}\right) \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)-\cdots-----d\left(x_{m-1}, x_{m}\right)$.

$$
\leq\left(k^{n}+k^{n+1}-------k^{m-1}\right) d\left(x_{0}, x_{1}\right) .
$$

Since $\mathrm{k}_{1}+\mathrm{k}_{2}+\mathrm{k}_{3}+\mathrm{k}_{4}+4 \mathrm{k}_{5}+4 \mathrm{k}_{6}+2 \mathrm{k}_{7}<2$. So $d\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}\right) \leq \frac{\mathrm{k}^{\mathrm{n}}}{1-\mathrm{k}} \mathrm{d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)$
i.e. $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}\right) \rightarrow \propto$ as $\mathrm{n} \rightarrow \infty$.

So $\left\{x_{n}\right\}$ is a Cauchy sequence in X. Since X is complete so there exist a point $x \in X$ such that $X_{n} \rightarrow x$ as $n \rightarrow \infty$.
Again continuity of f gives $\mathrm{f}(\mathrm{x})=\mathrm{f}\left(\lim _{\mathrm{n} \rightarrow \infty} \mathrm{X}_{\mathrm{n}}\right)=\lim _{\mathrm{n} \rightarrow \infty} \mathrm{f} \mathrm{x}_{\mathrm{n}}=\lim _{\mathrm{n} \rightarrow \infty} \mathrm{X}_{\mathrm{n}+1}=\mathrm{x}$.
Thus $f(x)=x$ i. e. x is a fixed point of f in X.
Now we show that x is unique. For suppose y be other fixed point such that $\mathrm{T}(\mathrm{y})=\mathrm{y}$,
Then $d(x, y)=d\left(f_{x}, f_{y}\right) \leq k_{1} \frac{d\left(x, f_{y}\right) d\left(y, f_{y}\right)+d(x, f y) d\left(y, f_{x}\right)}{d\left(x, f_{x}\right)+d\left(y, f_{y}\right)+d\left(x, f_{y}\right)+d\left(y, f_{x}\right)}+$
$\mathrm{k}_{2} \frac{\mathrm{~d}\left(\mathrm{x}, \mathrm{f}_{\mathrm{y}}\right) \mathrm{d}\left(\mathrm{y}, \mathrm{f}_{\mathrm{x}}\right)+\mathrm{d}\left(\mathrm{y}, \mathrm{f}_{\mathrm{y}}\right) \mathrm{d}\left(\mathrm{x}, \mathrm{f}_{\mathrm{y}}\right)}{\mathrm{d}\left(\mathrm{x}, \mathrm{f}_{\mathrm{x}}\right)+\mathrm{d}\left(\mathrm{y}, \mathrm{f}_{\mathrm{y}}\right)+\mathrm{d}\left(\mathrm{x}, \mathrm{f}_{\mathrm{y}}\right)+\mathrm{d}\left(\mathrm{y}, \mathrm{f}_{\mathrm{x}}\right)}+\mathrm{k}_{3} \frac{d\left(x, f_{x}\right) d\left(x, f_{x}\right)+d(x, f y) d\left(y, f_{x}\right)}{d\left(x, f_{x}\right)+d\left(x, f_{x}\right)+d\left(x, f_{y}\right)+d\left(y, f_{x}\right)}+$
$k_{4} \frac{d\left(x, f_{x}\right) d\left(x, f_{y}\right)+d\left(y, f_{x}\right) d\left(y, f_{y}\right)}{d\left(x, f_{x}\right)+d\left(y, f_{y}\right)+d\left(x, f_{y}\right)+d\left(y, f_{x}\right)}+k_{5}\left[d\left(x, f_{x}\right)+d\left(y, f_{y}\right)\right]+k_{6}\left[d\left(x, f_{y}\right)+d\left(y, f_{x}\right)\right]$
$+\mathrm{k}_{7} \mathrm{~d}(\mathrm{x}, \mathrm{y})$.

$$
\leq k_{1} \frac{d(x, x) d(y, y)+d(x, y) d(y, x)}{d(x, x)+d(y, y)+d(x, y)+d(y, x)}+
$$

$k_{2} \frac{d(x, x) d(y, x)+d(y, y) d(x, y)}{d(x, x)+d(y, y)+d(x, y)+d(y, x)}+k_{3} \frac{d(x, x) d(x, x)+d(x, y) d(y, x)}{d(x, x)+d(y, y)+d(x, y)+d(y, x)}+$
$k_{4} \frac{d(x, x) d(x, y)+d(y, x) d(y, y)}{d(x, x)+d(y, y)+d(x, y)+d(y, x)}+k_{5}[d(x, x)+d(y, y)]+k_{6}[d(x, y)+d(y, x)]$
$+\mathrm{k}_{7} \mathrm{~d}(\mathrm{x}, \mathrm{y})$.

$$
\leq \mathrm{k}_{1} \frac{\mathrm{~d}(\mathrm{x}, \mathrm{y}) \mathrm{d}(\mathrm{y}, \mathrm{x})}{2 \mathrm{~d}(\mathrm{y}, \mathrm{x})}+\mathrm{k}_{3} \frac{\mathrm{~d}(\mathrm{x}, \mathrm{y}) \mathrm{d}(\mathrm{y}, \mathrm{x})}{2 \mathrm{~d}(\mathrm{y}, \mathrm{x})}+2 \mathrm{k}_{6} \mathrm{~d}(\mathrm{x}, \mathrm{y})+\mathrm{k}_{7} \mathrm{~d}(\mathrm{x}, \mathrm{y}) .
$$

Then $d(x, y) \leq \frac{k_{1}}{2} d(x, y)+\frac{k_{3}}{2} d(x, y)+2 k_{6} d(x, y)+k_{7} d(x, y)$.
So $d(x, y) \leq\left[\frac{k_{1}}{2}+\frac{k_{3}}{2}+2 k_{6}+k_{7}\right] d(x, y)$.
Which is a contradiction, because $\mathrm{k}_{1}+\mathrm{k}_{2}+\mathrm{k}_{3}+\mathrm{k}_{4}+4 \mathrm{k}_{5}+4 \mathrm{k}_{6}+2 \mathrm{k}_{7}<2$.
Thus $d(x, y)=0$ i. e. $x=y$. Hence x is the unique fixed point of f.
Remark

1. If $\mathrm{k}_{1}=\mathrm{k}_{2}=\mathrm{k}_{3}=\mathrm{k}_{4}=\mathrm{k}_{5}=\mathrm{k}_{6}=0$ then the theorem reduce to Banach [1].
2. If $k_{1}=k_{2}=k_{3}=k_{4}=k_{5}=k_{6}=k_{7}=0$ then the theorem reduce to Kkannan [2].
3. If $\mathrm{k}_{1}=\mathrm{k}_{2}=\mathrm{k}_{3}=\mathrm{k}_{4}=0$ then the theorem reduce to Reich [3].
4. If $\mathrm{k}_{1}=\mathrm{k}_{2}=\mathrm{k}_{3}=\mathrm{k}_{4}=\mathrm{k}_{6}=0$ then the theorem reduce to Chatterjee [4].
5. If $\mathrm{k}_{1}=\mathrm{k}_{2}=\mathrm{k}_{3}=\mathrm{k}_{4}=\mathrm{k}_{5}=0$ then the theorem reduce to Fisher [5].
6. If $\mathrm{k}_{3}=0$ then the theorem reduce to Yadav [6].

References

1. Banach, S.; Surles operation dans les ensembles abstracts etleur application aux equations integrals, Fund.Math.3,(1992),133-181.
2. Kannan, R.; Some results on fixed points П, Amer. Math. Monthly, 76(1969), 405-409.
3. Reich, S.; Some remarks concerning contraction mappings, Canada Math. Bull, 1(1971), 121-124.
4. Chatterjee S. K.; Fixed point theorems, Comptes. Rend. Accad. Bulgare.Sa, 25 (1972), 727-730.
5. Fisher, B.; A fixed point theorem for compact metric space, Publ.Inst.Math.25(1976), 193-194.
6. Yadav, R. N., Rajput, S. S., Bhardwaj, R. ; Some fixed point theorems for extension of Banach contraction principle, Acta Cien.Ind.,2(2007), 461-466.
