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A R T I C L E  I N F O                              A B S T R A C T  
 

This paper finds a limiting region for the number of subjects required and hence number of 
failed in screening test in multi-centric clinical trials. This situation follows a properly 
normalized independent vector sequences comprising of moving maxima (Yk (n)) for m 
(>1) multi centric set up in clinical trials, where 1≤k (n)≤n.  Results are given for bi-centric 
and multi-centric situations, under certain conditions on k (n).  
 
 
 
 

 
    

 
 

 

 
 
 
 
 
 

 
   

INTRODUCTION 
 

Inclusion of subjects or patients in a clinical trial depends on 
the screening test. As a result, suppose the study requires n 
subjects, it is customary to allow the subjects (>n) for 
screening to achieve n. It is not possible for a doctor to screen 
all the subjects in one day itself. However, in each centre 
doctors fixed equal number of subjects to be included in each 
day, so that total number of subjects included is equal to n. 
Subjects will be included based on the screening test.  
Subjects are screened till the required subjects pass the 
screening test. If subjects pass the screening test, they are 
included else are rejected. Rejected subjects are the failures. 
Thus the number of failures in each day differs.  The number 
of failures and hence the number of screening subjects to 
make it to the trial till the fixed number of inclusions is 
reached on the jth day follows Negative Binomial Distribution 
(NBD). Observe that the maximum failures moves and hence 
screening subjects , by leaving first few days  of information 
on number of failures and considering the last k(n) days of 
information does not affect too much. This is exactly the 
moving maxima, which is due to Rothmann and Russo 
(1991). As this scheme of finding number of failures for fixed 
number of inclusion of subjects on each day is adopted at 
each center , the moving maxima of number of screening 
subjects, that include failures  and test passed subjects, on jth 
day constitute vector sequence of independent components of 
ith centre moving maxima. Thus to provide optimum resources 
at the centre to minimize the cost involved , doctors /company 
might be interested to know the strong limiting regions in 
which the moving maxima of number of failures or number of 
screening subjects  of multi-centre lie. In view of this, the 
following set up is planned to get the strong limiting regions 
for vector sequences of independent copies of moving 

maxima for Negative Binomial Distribution (NBD). However, 
for ease of computation, results are proved for bi-centric case.  
The results are stated for multi-centric vector sequences. 
Below the set up is explained. 
 

Let r be the number of subjects passes the screening tests i.e. 
the sample size required for the multi-centric trial. Let {Xn , 
n≥1} be a sequence of number of screening subjects required 
to meet r and is an independent identically distributed random 
variables ( i.i.d.r.v) with common probability mass function   
 

P(X=k) = (k-1) c (r-1) a
r (1-a) k-r, k=r, r+1, …, 0<a<1. 

 

Define,  moving maxima Yi
k(n) = max(Xn+1 , Xn+2 , …., Xn+ 

k(n)) where k(n) is a sequence of positive integers , 2≤ k(n) ≤n, 
for  ith multi-centre ,i=1,2,3,…. 
 

Hebbar and Vadiraja (1997) have used following conditions 
on general k (n) to find the strong limiting bounds for moving 
maxima in continuous case. 

K (n) is non-decreasing     
  (1.1) 

Sup [k (n+1) – k (n)] ≤µ (finite)    
  (2.1) 

and 
 

K (n) = [n/ (logn)t(n)] where t(n)  ∞ as n  ∞ 
   (3.1) 

 

Throughout, δl’s, l=1, 2,.. are sufficiently small positive 
constants. Now the results are stated below. Let cn(x) = 
xan+bn, where an=-loglogn/ log (1-a), bn = -logn/log (1-a) are 
the real sequences.  
 

Theorem 1 The almost sure limit set of the vector sequence  
{Y1k (n) - an)/ bn, Y2

K (n) - an)/ bn} n≥1, coincides with the 
region S1= {(x, y):  r-p-1≤x, y≤r, x + y ≤ 2r-p-1} 0≤p<∞. 
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Theorem 2 The almost sure limit set of the vector sequence  
{Y1k (n) - an)/ bn, Y

2
k(n) - an)/ bn ,…, Yl

k(n) - an)/ bn } n≥1,l>0  
coincides with the region S1={(x,y,…,z):  r-p-1≤x,y,...,z ≤ r , x 
+ y+..+z ≤ mr-p-1} 0≤p<∞. 
 

Remark  Let )(
*

nkY = max(Xn-k(n)+1 , Xn-k(n)+2 , …., Xn) be the 

backward moving maxima and backward. Then the above 
results hold good.   
 

Proofs 
 

The proof of Theorem 1 is built up through the following 
lemmas.  
 

Lemma 1.2 
  

For every є>0, we have  
 

Const. (log n)-(x+p-r+1+є/8) ≤ k (n) [1-F (cn(x))] ≤ Const.(log n)-(x+p-r+1+є/6)    (1.2) 
 

Lemma 2.2 
 

Let S1 = {(x, y): r-p-1 ≤ x,y ≤ r , x+y ≤ 2r-p-1  
For every Є>0,  
P (Y1

k (li) > cli(x+є), Y2
K (li) > cli(y) i.o.)=0    (2.2)

  
P (Y1

k (li) > cli(x), Y2
K (li) > cli(y+є) i.o.)=0  (3.2)

   
and P (Y1

k(li) > cli(x), Y2
k(li) > cli(y)  i.o.)=1  (4.2)

   
Where li= [exp (iθ)] and θ-1=(x+y+2p-2r+2+є) 
 
Proof (2.2) is achieved as follows. 
 

P(Y1
k(li) > cli(x+є), Y2

k(li) > cli(y) )= P(Y1
k(li) > cli(x+є)) P(Y2

k(li) 
> cli(y)) 
 = const.k2 (li) (1-F (cli(x+є))). (1-F (cli(y))) 
 ≤const. (logli)

-(x+p-r+1+є+ є/6) –(y+p-r+1+є/6)   (5.2) 
 

By (1.2) and for every є>0. Note that for i large, we have 
 

Θ (x+y+2p-2r+2+ є + є/6+є/6)= 1 + δ1      (6.2) 
Where δ1 = [θ є/3] > 0. 
In view of (6.2) and (5.2), 
Σ P (Y1

k (li) > cli(x+є), Y2
K (li) > cli(y) <∞ 

 

Through B-C lemma, (2.2) follows. The proof of (3.2) is 
similar. The proof of (4.2) is established as follows.  
Similar to (5.2) and (6.2), 
P(Y1

k(li) > cli(x), Y2
k(li) > cli(y) )= const.k2(li)(1-F(cli(x))) .(1-

F(cli(y))) 
              ≥const. (logli)

-(x+p-r+1+є/8) –(y+p-r+1+є/8) 
             = const. i-θ(x+y+2p-2r+2+ є/4) 
             =const. i-(1-δ2) 

 

Where δ2 = θ3є/4>0 for every є>0 and i large. To prove (4.2), 
it is sufficient to show Yi

k (li)‘s are independent for all i large, i 
=1, 2,.. Observe that, 
 

Li –k (li) + 1 - li+1 = li [1–k (li)/ li + 1/ li - li-1/ li ] ∞ for large 
I and for θ >0 i.e x+y ≤2r-p-1 
As li-1/ li 1 (k (li-1) *li-1/ li-1* li) 0, 1- li-1/ li   ~ h i (θ-1) 

Hence, whenever θ>1, i.e.   (x+y+2p-2r+2)<1 
R.H.S (12.2) is ~ li as i→∞. Further for (1+p)-1< θ≤1, the 
expression inside the square bracket of (12.2) is ~ hi (θ-1) as 
i→∞, since i (1-θ) * k (li)/ li 0  
Thus, for θ> (1+p)-1, i.e. for x+y<2r-p-1,  
R.H.S (12.2) tends to ∞ as i→∞. 
 

Thus, the events under consideration are independent, for all i 
large. 
 

Lemma 3.2 For all x≥r, y≥r with x+y>2r-p-1 and for every 
Є>0, 
P (Y1

k (n) > cn(x+є), Y2
K (n) > cn(y+є) i.o.)=0  

    (7.2)  
   
Proof  P(Y1

k(n) > cn(x+є), Y2
k(n) > cn(y+є)) = const.k2(n)(1-

F(cn(x+є))) .(1-F(cn(y+є))) 
 

                           ≤ const. (logn)-(x+p-r+1+ є +є/6) –(y+p-r+1+ є +є/6) 
                           = const. (logn)-(x+y+2p-2r+2+ 7є/3)  (8.2) 
 

For every є>0, x+y>2r-p-1 and for n large, 
 

x+y+2p-2r+2+7є/3 > 1+δ3, δ3=1+p+7є/3 >0, 0≤p<∞.   (9.2) 
 

An appeal to (9.2), (8.2) and B_C lemma, the lemma is 
proved. 
 

Lemma 4.2 For every Є>0 and x0 = r-p-1 
 

 P (Y1
k (n) < (x0-є) bn    i.o.)=0 (10.2)   

 P (Y2
K (n) < (x0-є) bn    i.o.)=0 (11.2)   

 

Proof 
(10.2) is established by showing the following and (11.2) 
follows on similar lines. 
 P (Y1

k (n) > (x0-є) bn i.o.)=1  11.2) 
 

 P (Y1
k (n) ≤ (x0-є) bn and Y1

k (n+1) > (x0-є)bn+1  i.o.)=0    (12.2) 
 

Note that, 
 

 P (Y1
k (n) > (x0-є)bn ) = Const. k(n)(1-F((x0-є)bn)) 

   
               ≤ Const. (logn)-(x-є/8+p-r+1+ є/6)      (13.2) 
For every є >0, x0 – є/8+p-r+1+ є/6 =δ4, 0< δ4<1.   
 

An appeal to (13.2) and B_C lemma, (11.2) is established. 
(12.2)  is shown as follows. 
 

P (Y1
k (n) ≤ (x0-є) bn and Y1

k (n+1) > (x0-є) bn+1 )  
≤ P(Y1

k(n) ≤ (x0-є)bn  and max(Xn-k(n+1)+2,…,    Xn-k(n), Xn+1) > (x0-є)bn ) 
= P(Y1

k(n) ≤ (x0-є)bn ) •P(max(Xn-k(n+1)+2,…, Xn-k(n), Xn+1) > (x0-є)bn ) 
≤ Const. Fk(n)((x0-є)bn))•{k(n+1)-k(n)}(1-F((x0-є)bn)) 
≤ µ exp {-k (n) (1-F ((x0-є) bn))} • {1-F ((x0-є) bn)} (14.2)   
 

Using (2.1). By (3.1), for every є >0, n large and for some 
a>0, with Gn= k (n)(1-F((x0-є)bn)) (logn)a-є  <Gn 

< (logn) a+є     (15.2) 
 

Fix M>0, so that M (a-є) >1+ δ5, δ5>0 for large n.  By (15.2) and 
(1.2),  
 

RHS (14.2) ≤ µ exp {-((logn) a-є} (n)-1≤ µ n-1 (logn)-(1+δ5)   (16.2)  
 

In view of (15.2) and (16.2), (12.2) is established. Hence the 
lemma 4.2. 
 

Proof of Theorem 1 S is a required limit set by lemmas 3.2 
and 4.2. It is concluded with the fact that the limit set is 
necessarily closed from the lemma 2.2. This completes the 
proof of theorem1. 
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