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In this paper, we prove the generalized Ulam-Hyers stability of quadratic reciprocal functional equation 
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  associated with intuitionistic fuzzy homomorphisms and intuitionistic fuzzy derivations 

in intuitionistic fuzzy Banach algebras using Radu's fixed point method.  
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1. Introduction 
 

In 1940, Ulam [31] posed the famous Ulam stability problem. 
In 1941, Hyers [16] solved the well-known Ulam stability 
problem for additive mappings subject to the Hyers condition 
on approximately additive mappings. He gave rise to the 
stability theory for functional equations. In 1950, Aoki [2] 
generalized Hyers' theorem for approximately additive 
functions. In 1978, Th.M. Rassias [25] provided a generalized 
version of Hyers for approximately linear mappings. In 
addition, J.M. Rassias [24, 27] generalized the Hyers stability 
result by introducing two weaker conditions controlled by a 
product of different powers of norms and a mixed product-sum 
of powers of norms, respectively. In 2003, V. Radu [23] 
proposed a new method, successively developed in [11, 12] to 
obtain the existence of the exact solutions and the error 
estimations, based on the fixed point alternative.  
 

Intuitionistic fuzzy sets and Intuitionistic fuzzy metric spaces 
are studied in [7] and [22], respectively. The concept of 
intuitionistic fuzzy Banach algebra has been introduced by 
Bivas Dinda, T.K. Samanta and U.K. Bera [14]. 
 

In this paper, we prove the generalized Ulam-Hyers stability 
of quadratic reciprocal functional equation  
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(1.1) 
 
associated with intuitionistic fuzzy homomorphisms and 
intuitionistic fuzzy derivations in intuitionistic fuzzy Banach 
algebras using Radu's fixed point method.    
 
 
 
 
 
 
 
 

2.  Definitions On Intuitionistic Fuzzy Banach 
Algebras 
 

Now, we recall the basic definitions and notations in the 
setting of intuitionistic fuzzy Banach algebra.  
 

Definition 2.1 A binary operation      0,10,10,1:   is 

said to be continuous t -norm if   satisfies the following 
conditions:   
 

1.    is commutative and associative;  
2.    is continuous;  

3.  aa =1  for all  0,1a ;  

4.  dcba   whenever ca   and db   for all 

 .0,1,,, dcba    
 

Definition 2.2 A binary operation      0,10,10,1:   is 

said to be continuous t -conorm if   satisfies the following 
conditions:   
 

1.   is commutative and associative;  

2.   is continuous;  

3. aa =0  for all  0,1a ;  

4. dcba   whenever ca   and db   for all 

 .0,1,,, dcba   
 

Definition 2.3 [14] Let   be a continuous t -norm,   be a 

continuous t  conorm, and A  be an algebra over the field k  

(= R  or C ). An intuitionistic fuzzy normed algebra is an 

object of the form  , , , ,A      where  ,  are fuzzy sets 

on V R ,   denotes the degree of membership and   

denotes the degree of non-membership satisfying the 

following conditions for every Ayx ,  and ,s t R ;   
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• 1),(),(  txtx  ,  

• 0>),( tx ,  

• 1=),( tx , if and only if 0=x .  

• 








||
,=),(



t

xtx  for each 0 ,  

• ),(),(),( styxsytx   ,  

• max   ),(),(),,( stxysytx   ,  

• 1=),(lim tx
t




 and 0=),(lim
0

tx
t




,  

• 1<),( tx ,  

• 0=),( tx , if and only if 0=x .  

• 








||
,=),(



t

xtx  for each 0 ,  

• ),(),(),( styxsytx   ,  

• max   ),(),(),,( stxysytx  ,  

• 0=),(lim tx
t




 and 1=),( lim
0

tx
t




.  

 

Example 2.4 Let  , .A  be a intuitionistic fuzzy normed 

algebra. Let abba =  and  ,1min= baba   for all 

[0,1], ba . For all x A  and every 0>t , consider  
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Then  , , , ,A      is an intuitionistic fuzzy normed algebra.  
 

Definition 2.5 A sequence nnx }{  in an intuitionistic fuzzy 

normed algebra  , , , ,A      is said to converge to x A  

if for given 1<<0,0>0,> rtr , there exist an integer 

0n N  such that rtxxn  1>),(  and 

rtxxn <),(   for all 0nn  .  
  

Definition 2.6 In an intuitionistic fuzzy normed algebra 

 , , , ,A     , a sequence nnx }{  converges to x A  if 

1=),(lim txxn
n



  and 0=),(lim txxn

n



  for all 

0>t . In this case, we write  nasxx
IF

n .  

Definition 2.7 A sequence nnx }{  an intuitionistic fuzzy 

normed algebra  , , , ,A      is said to be Cauchy 

sequence if 1=),(lim txx npn
n



  and 

  0=,lim txx npn
n



  for all t R , 1,2,=p .  

 

Definition 2.8 An intuitionistic fuzzy normed algebra 

 , , , ,A      is said to be complete if every cauchy 

sequence in A  converges to an element of A .  
 
Definition 2.9 A complete intuitionistic fuzzy normed algebra 
is called intuitionistic fuzzy Banach algebra.  
 
Theorem 2.10 In an intuitionistic fuzzy normed algebra 

 , , , ,A      two sequences nnx }{  and nny }{  be such 

that xxn   and yyn   then xyyx nn  .  

Hereafter, throughout this section, assume that A  is a linear 

space,  ', ,A     is an intuitionistic fuzzy normed algebra 

and  , ,B    an intuitionistic fuzzy Banach algebra.  
 

Definition 2.11 A C -linear mapping :H A B  is called a 
quadratic reciprocal intuitionistic fuzzy Banach 

homomorphism if   = ( ) ( )H xy H x H y  for all ,x y A .  
 

Definition 2.12 A C -linear mapping :D A A  is called a 
quadratic reciprocal intuitionistic fuzzy Banach derivation if  

  2 2

1 1
= ( ) ( )D xy D x D y

y x
  for all ,x y A .  

Here, we present the upcoming result due to Margolis and 
Diaz [19] for fixed point theory.  
 

Theorem 2.13 [19] Suppose that for a complete generalized 

metric space ),(   and a strictly contractive mapping 

:T  with Lipschitz constant L . Then, for each given 

x  , either  

0,            =),( 1  nxTxTd nn
 

or there exists a natural number 0n  such that 

(FP1)  <),( 1xTxTd nn
 for all 0nn   ; 

(FP2) The sequence )( xT n
 is convergent to a fixed to a fixed 

point 
y  of T  

(FP3) 
y  is the unique fixed point of T  in the set 

};<),(:{= 0  yxTdy
n

 

(FP4) ),(
1

1
),( Tyyd

L
yyd




 for all .y   

 

3.   Intuitionistic Fuzzy Banach Algebra Stability 
Results 
 

In this section, we investigate the generalized Ulam-Hyers 
stability of the functional equation (1.1) connected to 
intuitionistic fuzzy homomorphisms and intuitionistic fuzzy 
derivations in intuitionistic fuzzy Banach algebras using 
Radu's fixed point method. 
 

Theorem 3.1  Let :f A B  be a mapping for which there 

exists a function : 'P A A A   with the conditions  
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P x y t

P x y t

  

  







                        

(3.1) 

for all ,x y A  and all 0>t  where  
 







1=2
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2
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(3.2) 

 

and satisfying the functional inequalities 

  

( ) ( )
( ) ,

( ) ( ) 2 ( ) ( )

, ,

f x f y
f x y t

f x f y f x f y

P x y t





 
  

   



 

  

  

( ) ( )
( ) ,

( ) ( ) 2 ( ) ( )

, ,

( ) ( )
( ) ,

( ) ( ) 2 ( ) ( )

, ,

f x f y
f x y t

f x f y f x f y

P x y t

f x f y
f x y t

f x f y f x f y

P x y t









 
  

    


 




         
 

                    (3.3) 

and 

    
    

( ) ( ) ( ), , , ,

( ) ( ) ( ), , ,

f xy f x f y t P x y t

f xy f x f y t P x y t

 

 

  


                             

(3.4) 
  

 for all ,x y A  and all 0>t . If there exists )(= iLL  

such that the function  
 

,
2

,
2

=)( 









xx
Px                                                              

(3.5) 
 
 has the property  

   
    








txtxL

txtxL

ii

ii

),(=),(

),(=),(
2

2





                                     
(3.6) 
 

 for all x A  and all 0>t , then there exists a unique 
quadratic reciprocal homomorphism :H A B  satisfying the 
functional equation 
(1.1) and  

 

 

1

1

( ) ( ), ( ),
1

( ) ( ), ( ),
1

i

i

L
f x H x t x t

L

L
f x H x t x t

L

 

 





 
    

  


                                    
(3.7) 

 for all x A  and all 0>t .  
Proof. 
Consider the set  

= { | , (0) 0h A B h    

and introduce the generalized metric on  , 

( , )

(0, ) :

= inf .( ( ) ( ), ) ( ( ), ), , > 0

( ( ) ( ), ) ( ( ), ), , > 0

d h f

L

h x f x t x Lt x A t

h x f x t x Lt x A t

 

 

  
 

     
       

(3.

8) 
It is easy to see that (3.8) is complete with respect to the 

defined metric. Define :J  by ),(=)( 2 xhxJh ii 

 for all x A . Now, from (3.8) and fh,   

2 2

2

2 2

( ( ) ( ), )

( ( ), ), , > 0}

( ( ) ( ), )

( ), , , > 0}

( ( ) ( ), )

( ( ), ), , > 0}

( ( ) ( ), )

( ( ), ), , > 0}
inf (0, ) :

i i i i

i

i

i i i i

h x f x t

x t x A t

h x f x t

t
x x A t

h x f x t

x Lt x A t

Jh x Jf x t

x Lt x A t
L





    

 


    










   
 

  

       



   



   

 

2 2

2

2 2

( ( ) ( ), )

( ( ), ), , > 0}

( ( ) ( ), )

( ), , , > 0}

( ( ) ( ), )

( ( ), ), , > 0}

( ( ) ( ), )

( ( ), ), , > 0}

i i i i

i

i

i i i i

h x f x t

x t x A t

h x f x t

t
x x A t

h x f x t

x Lt x A t

Jh x Jf x t

x Lt x A t



    

 


    























   
 

  

       



   



   














 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
   

  

This implies J  is a strictly contractive mapping on   with 

Lipschitz constant L .  
 

Replacing ),( yx  by ),( xx  in (3.3), we reach  
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1 (0, ) :

( )
( (2 ) , ) ( , ),

inf 4
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4

f x
f x t P x x t

f x
f x t P x x t

 

 

  
 
       
  
   
    

                 

(3.9) 
 

for all x A  and all 0>t . Now, from (3.9) and (3.6) for the 

case 0=i , we reach  
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(3.10) 

for all x A  and all 0>t . Again by interchanging x  into 

2

x
 in (3.9) and using (3.6) for the case 1=i , we get 

 
 

 

1 1 (0, )

1
( ( ) , ) , ,

4 2 2 2

( ( ) ( ), ) ( ),inf
:

1
( ( ) , ) , ,

4 2 2 2

( ( ) ( ), ) ( ),

L

x x x
f x f t P t

f x Jf x t x t

x x x
f x f t P t

f x Jf x t x t

 

 

 

 

  
 
      

       
      

     
 
                        

         

(3.11) 

 

for all x A  and all 0>t . Thus, from (3.10) and (3.11), we 

arrive  
1

1

1

(0, ) :

inf ( ( ) ( ), ) ( ( ), ),

( ( ) ( ), ) ( ( ), )
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i
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L

f x Jf x t x L t

f x Jf x t x L t

 

 







  
  
     
  

      
               

(3.12) 

 

for all x A  and all 0>t . Hence property (FP1) holds.  

By (FP2), it follows that there exists a fixed point H  of J  in 

  such that  

 

 

2

2

( ) ( ), =1,lim

( ) ( ), = 0lim

n n
i i

n

n n
i i

n

f x H x t

f x H x t

  

  







  

 

for all x A  and all 0>t .  

In order to prove :H A B  is quadratic reciprocal, 

replacing  yx,  by  yx n
i

n
i  ,  and multiplying by 

n
i
2  in 

(3) and using the definition of ( )H x  , and then letting 

n , we see that H  satisfies (1) for all ,x y A  and all 

0>t . So it follows that 

 

 

4 4

4 4

( ( ) ( ) ( ), )

= (2 (2 .2 ) (2 ) (2 ) ,2 )

( (2 ,2 ), ),

( ( ) ( ) ( ), )

= (2 (2 .2 ) (2 ) (2 ) ,2 )

( (2 ,2 ), )

n n n n n n

n n

n n n n n n

n n

H xy H x H y t

H x y H x H y t

P x y t

H xy H x H y t

H x y H x H y t

P x y t













 


 


 


 
 
 

 

for all ,x y A  and all 0>t . Letting n  in above 

inequalities, we obtain  
 

( ( ) ( ) ( ), ) = 1,

( ( ) ( ) ( ), ) = 0

H xy H x H y t

H xy H x H y t





 


 
 

for all ,x y A  and all 0>t . Hence H  is a quadratic 

reciprocal homomorphism. 

By (FP3), H  is the unique fixed point of J  in the set 

= { : ( , ) < },H d f H H    is the unique function 

such that  
1

1

( ( ) ( ), ) ( ( ), ),

( ( ) ( ), ) ( ( ), )

i

i

f x H x t x L t

f x H x t x L t

 

 





  

  
 

for all x A  and all 0>t . Finally by (FP4), we obtain  

 

 

1

1

( ) ( ), ( ), ,
1

( ) ( ), ( ),
1

i

i

L
f x H x t x t

L

L
f x H x t x t

L

 

 





 
   

 

 
   

   
for all x A  and all 0>t . So, the proof is complete.  
The following corollary is an immediate consequence of 
Theorem 3.1 which shows that (1.1) can be stable.  
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Corollary 3.2  Suppose that a function :f A B  satisfies 

the double inequality 
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(3.13) 
and 
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for all ,x y A  and all 0>t  , where ,  are constants 

with 0> . Then there exists a unique quadratic reciprocal 

homomorphism :H A B  such that the double inequality 

 

 

 
 
 

2

2 2 2 2

2 2 2 2

3 ,

2 | 2 2 | || || , 2
( ) ( ),

| 2 2 | || || , 2

3 | 2 2 | || || , 2

t

x t
f x H x t

x t

x t

 

 


 

 







 

  

  
 


 

  

  

  

 

 

 

 

 
 
 

2

2 2 2 2

2 2 2 2

3 ,

2 | 2 2 | || || ,2
( ) ( ),

| 2 2 | || || ,2

3 | 2 2 | || || , 2

t

x t
f x H x t

x t

x t

 

 


 

 







 

  


  
 


 



  

  

  

holds for all 

x A  and all 0>t .  
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for all x A  and all 0>t . Thus, the relation (3.1) holds. It 
follows from (3.5), (3.6) and (3.13), we get 
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for all ,x y A  and all 0>t . Also from (3.6), we have  
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 for all x A  and all 0>t . Hence, the inequality (3.7) is 

true for 

2 2

2 2

2 2 2 2

2 2 2 2

= 0 = 1

(1) 2 0 2 0

(2) 2 < 2 2 > 2

(3) 2 < 1 2 > 1

(4) 2 < 1 2 > 1.

L i L i


  

  

  

 

 

 

 

 

 

 

 

 

 

 

2

2

2

2

2
( ) ( ), ( ),

1 2

= ,
3

2
( ) ( ), ( ),

1 2

= ,
3

f x H x t x t

t

f x H x t x t

t

 

 

 

 









 
    

 
   

  


        
   

  

 

 for all x A  and all 0>t . Also, for condition (1)  and 
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 for all x A  and all 0>t . Also, for condition (2)  and 

1=i , we arrive  
 

 

 

2

2

2

2

1
( ) ( ), ( ),

1 2

2
= || || ,

2 2

1
( ) ( ), ( ),

1 2

2
= || || ,

2 2

f x H x t x t

t
x

f x H x t x t

t
x

 

 

 

 









       
 

  
 


       


  
    















 

for all x A  and all 0>t . The rest of the proof is similar to 
that of previous cases. This finishes the proof.  
The proof of the following Theorem 3.3 and Corollary 3.4 is 
similar lines to the Theorem 3.1 and Corollary 3.2.  

Theorem 3.3  Let :f A A  be a mapping for which there 

exists a function : 'P A A A   with the double condition  
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for all x A  and all 0>t , then there exists a unique 

quadratic reciprocal derivation :D A A  satisfying the 
functional equation (1.1) and 
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for all x A  and all 0>t .   

Corollary 3.4  Suppose that a function :f A A  satisfies 

the inequalities (3.13) and  
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 for all ,x y A  and all 0>t  , where ,  are constants 

with 0> . Then there exists a unique quadratic reciprocal 

derivation :D A A  such that the inequalities 
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 holds for all x A  and all 0>t . 
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