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1. Introduction and Preliminaries 
 

In 1940, S. M. Ulam[11] raised the following question. Under 

what conditions does there exists an additive mapping near an 

approximately addition mapping? The case of approximately 

additive functions was solved by D. H. Hyers[4] under certain 

assumption. In 1978, a generalized version of the theorem of 

Hyers for approximately linear mapping was given by Th. M. 

Rassias[8]. The stability concept that was introduced and 

investigated by Rassias is called the Hyers-Ulam-Rassias 

stability. During the last decades, the stability problems of 

several functional equations have been extensively investigated 

by a number of authors[[1, 2, 3, 5, 6, 7, 9]]and references 

therein. 
 

In the present paper, the authors determine the stability results 

concerning the following additive functional equation 

)(4)(4=)3()(3 yfxfyxfyxf  in intuitionistic 

fuzzy normed spaces(IFNS). 
 

Here we recall some notations and basic definitions.  
 

Definition 1.1 A binary operation [0,1][0,1][0,1]:   is 

said to be a continuous t -norm if it satisfies the following 

conditions:   
 

    •   is associative and commutative  

    •   is continuous  

    • aa =1  for all [0,1]a   

    • dcba   whenever ca   and db   for each 

[0,1],,, dcba .  
 

Definition 1.2 A binary operation [0,1][0,1][0,1]:   is 

said to be a continuous t -conorm if it satisfies the following 

conditions:   
 

    •   is associative and commutative  

    •   is continuous  

    • aa =0  for all [0,1]a   

    • dcba   whenever ca   and db   for each 

[0,1],,, dcba .  
  

Using the above two definitions, Saadati and Park [10] 

introduced the concept of intuitionistic fuzzy normed spaces as 

follows: 
 

Definition 1.3 The five-tuple  ,,,, X  is said to be an 

intuitionistic fuzzy normed spaces(IFNS) if X  is a vector space, 

  is continuous t -norm,   is a continuous t -conorm and 

 ,  are fuzzy sets on )(0,X  satisfying the following 

conditions. For every Xyx ,  and 0>, ts   
  

    • 1),(),(  txtx    

    • 0>),( tx   

    • 1=),( tx  iff 0=x   

    • 

















t
xtx ,=),(  for each 0   

    • ),(),(),( styxsytx     

    • [0,1])(0,:,.)( x  is continuous  

    • 𝑙𝑖𝑚𝑡→∞  1=),( tx  and 𝑙𝑖𝑚𝑡→0 0=),( tx   

    • 1<),( tx   

    • 0=),( tx  iff 0=x   

    • 

















t
xtx ,=),(  for each 0   

    • ),(),(),( styxsytx     
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    • [0,1])(0,:,.)( x  is continuous  

    • 𝑙𝑖𝑚𝑡→∞  0=),( tx  and 𝑙𝑖𝑚𝑡→0 1=),( tx . 
 

In this case ),(   is called an intuitionstic fuzzy norm. 

Let ),,,,( X  be an IFNS. Then, a sequence )(= nxx  is 

said to be intuitinstic fuzzy convergent to XL  if lim 

1=),( tLxn   and lim 0=),( tLxn   for all 0>t . In 

this case we write Lx
IF

n   as n .  
 

Let ),,,,( X  be an IFNS. Then )(= nxx  is said to be 

intuitinstic fuzzy Cauchy sequence if lim 1=),( txx npn   

and lim 0=),( txx npn   for all 0>t  and 1,2,...=p . 

 

Let ),,,,( X  be an IFNS. Then ),,,,( X  is said to 

be complete if every intuitinstic fuzzy Cauchy sequence in 

),,,,( X  in intuitinstic fuzzy convergent in 

),,,,( X . 
 

2. Intuitinstic Fuzzy Stability 
 

The functional equation  

)(4)(4=)3()(3 yfxfyxfyxf                       (2.1) 

 is called an additive functional equation, since the function 

cxxf =)(  is its solution. Every solution of the additive 

functional equation is said to be an additive mapping. 
 

We start with a generalized Hyers-Ulam-Rassias type theorem in 

IFNS for an additive functional equation.  
 

Theorem 2.1  Let X  be a linear space and let ),,(  Z  be 

an IFNS. Let ZXX :  be a function such that for some 

3>   

 txt
x

 ,0),(,,0
3

















  

 txt
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 ,0),(,,0
3

















                                     (2.2) 
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 for all Xyx ,  and 0>t . 
 

Let ),,( Y  be an intuitionstic fuzzy Banach space and let 

YXf :  be a  -approximately additive mapping and that  

 

 ,),,()(4)(4)3()(3(3 tyxyfxfyxfyxf    

 tyxyfxfyxfyxf ),,()(4)(4)3()(3(3                                                                                        (2.3) 

 

for all 0>t  and all Xyx , . Then there exists a unique 

additive mapping YXA :  such that  
 

  and
t

xtxfxA 
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                                                               (2.4) 

 for all Xx  and all ot > .  

 

Proof. Put 0=y  in(2.3). Then for all Xx  and 0>t   

   txtxfxf ,0),(),(3)(3    

this gives that  
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, we get 
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for all 0>, tXx  and 0>n  where nj
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By replacing x  with 
m
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 in(2.7), we obtain 
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 for all 00,>,  mtXx  and 0n . Since 3>  and 
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, the Cauchy criterion for convergence in IFNS shows 
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that 
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 for large n . Taking the limit as n  and using the definition of IFNS, we get  
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 for all 0.>,, tXyx   We notice that A  satisies (2.1). Therefore A  is an additive mapping. 
 

To prove the uniqueness of the additive mapping A , assume that there exists a additve mapping YXA  :  which satisfies(2.4). 
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Therefore   1=),()( txAxA   and   0=),()( txAxA  , for all 0.>t  Hence ).(=)( xAxA   This completes the proof.  

In the following theroem we consider 3<<0    
 

Theorem 2.2 Let X  be a linear space and let ),,(  Z  be an IFNS. Let ZXX :  be a function such that for some 

3<<0    
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This completes the proof. 
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