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ABSTRACT

4f(y) in Intuitionistic fuzzy normed spaces.

GENERALIZED HYERS-ULAM-RASSIAS STABILITY OF A FUNCTIONAL
EQUATION IN INTUITIONISTIC FUZZY NORMED SPACES
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In this paper, we investigate the problem of Hyers- Ulam-Rassias stability of the additive functional equation f(3x + y) + f(x + 3y) = 4f(x) +
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1. Introduction and Preliminaries

In 1940, S. M. Ulam[11] raised the following question. Under
what conditions does there exists an additive mapping near an
approximately addition mapping? The case of approximately
additive functions was solved by D. H. Hyers[4] under certain
assumption. In 1978, a generalized version of the theorem of
Hyers for approximately linear mapping was given by Th. M.
Rassias[8]. The stability concept that was introduced and
investigated by Rassias is called the Hyers-Ulam-Rassias
stability. During the last decades, the stability problems of
several functional equations have been extensively investigated
by a number of authors[[1, 2, 3, 5, 6, 7, 9]]and references
therein.

In the present paper, the authors determine the stability results
concerning the following additive functional equation

f(3X+y)+ f(x+3y)=4f(X)+4f(y)in intuitionistic
fuzzy normed spaces(IFNS).
Here we recall some notations and basic definitions.
Definition 1.1 A binary operation *:[0,1]x[0,1] —[0,1] is

said to be a continuous t -norm if it satisfies the following
conditions:

* * js associative and commutative

* * is continuous

-axl=a forall a€[0,1]

«a*b<c*d whenever a<c and b<d foreach
a,b,c,d €[0,1].

Definition 1.2 A binary operation ¢:[0,1]x[0,1]—[0,1] is
said to be a continuous t -conorm if it satisfies the following
conditions:

« O is associative and commutative

« O is continuous

- a00=a forall a€[0,1]

« adb < c0d whenever a<c and b<d for each
a,b,c,d €[0,1].

Using the above two definitions, Saadati and Park [10]
introduced the concept of intuitionistic fuzzy normed spaces as
follows:

Definition 1.3 The five-tuple (X,,u,v,*, 0) is said to be an

intuitionistic fuzzy normed spaces(IFNS) if X is a vector space,
* js continuous t-norm, ¢ is a continuous t-conorm and

v are fuzzy sets on X x(0,00) satisfying the following
conditions. For every X,y € X and S,t >0

e u(x,t)+v(xt) <1

- u(x,1)>0

« u(x,t)=1iff x=0

o u(ox,t) = ,u(x,%] foreach ax # 0
a

o p(X,t)* u(y,s) < p(X+y,t+5)

« 1(X,.) 1 (0,00) > [0,1] is continuous

e limyLe M(X,t) =1 and lim,_, u(x,t) =0

«v(xt)<1

«v(x,t)=0iff x=0

s v(ax,t) = v[x,|t—|j foreach ¢ #0
a

- v(X,)0v(y,s) 2 v(x+y,t+5s)


http://www.journalijcar.org/

Generalized Hyers-Ulam-Rassias Stability of a Functional Equation in lntuitionstic Fuzzy...

« v(X,.) : (0,00) >[0,1] is continuous
e limyoe V(X,1) =0 and lim,_, v(X,1) =1.

In this case (£,v) is called an intuitionstic fuzzy norm.

Let (X, ,v,* Q) be an IFNS. Then, a sequence X = (X,) is
said to be intuitinstic fuzzy convergent to L e X if lim
u(x,—L,t)=1 and lim v(x,—L,t)=0 forall t>0. In

IF
this case we write X, L as N — oo.

Let (X, 4,v,*,0) be an IFNS. Then X =(X,) is said to be
n+p_Xn1t):1
—x,,t)=0forall t>0and p=1.2,...

intuitinstic fuzzy Cauchy sequence if lim (X

and lim v(X,, ,

Let (X, z,v,*,0) bean IFNS. Then (X, &,v,*,90) is said to
be complete if every intuitinstic fuzzy Cauchy sequence in
(X, #,v,%,0) in intuitinstic  fuzzy convergent in
(X, t,v,%,0).

2. Intuitinstic Fuzzy Stability

The functional equation
f(3x+y)+ f(x+3y)=4f(X)+41(y) (2.1)

is called an additive functional equation, since the function

uBT(3x+y)+ f(x+3y)—4f (x)—4f(y) = 1/(p(x, y),t),
V(3T (3x+Yy)+ f(x+3y)—4f (X)—4f(y) <V'(p(x, y),t)

for all t>0 and all X,y € X . Then there exists a unique
additive mapping A: X —Y such that

)~ £9.0)2 w0000, 5 Jand

V(A= T().t)< V'((p(x,o), L ;3)t]

(2.4)
forall Xe X andall t>0.

Proof. Put Y =0 in(2.3). Thenforall Xxe X and t >0

f(X) =cx s its solution. Every solution of the additive
functional equation is said to be an additive mapping.

We start with a generalized Hyers-Ulam-Rassias type theorem in
IFNS for an additive functional equation.

Theorem 2.1 Let X be a linear space and let (Z, z',v') be
an IFNS. Let @ : X x X — Z be a function such that for some
a>3

ﬂ’((o@ ,Oj,tj > 11/ (p(x,0),0tt)
V’[(p(g ,Oj,tj > v’((p(x,O),at) (2.2)

and

.ol [ XY

3'p —,=— [t ]=1
Az!.zﬂ( & Jj
. [ XY

3'p —,=— [t |=0
LL@V( 3 J]

forall X,ye X and t>0.

Let (Y,z,V) be an intuitionstic fuzzy Banach space and let
f: X =Y bea ¢ -approximately additive mapping and that

(23)

#(F(3) =31 (x),t)> £/((x,0),t)

this gives that

u[sf@— f (x),t] > y’(co[g ,O}tj > 1(p(x0).),
1{3 f (gj _f (x),tj < V'(q{g ,Oj,tj <V(p(x,0),t).

(2.5)

n

X
Replacing X by 3— in(2.5), we get

Iu(snﬂ. f (311 J _3n f (3_):])’3ntj > lu’(q)[% ,Oj, O{tj > ,U'(w(x,o)!an"']‘[)’ and

(e

t
Replacing t by ——, we get
a
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y[3M1f[3ilj—3”f[3nJ,311]_. (p(x,0),t).and

V[BM1f(3ndj 3”f[§i],3;lJ__ (p(x.0).t). (2.6)

It follows from 3" f ( j f(x)= Z [3“&( ”1) 3Jf(3 D and (2.6) that

oo (3)- 82
>ln_[;{3”lf(3mj SJf(;J 3j+t1j 1 (p(x,0),t)and

oo mEs
<Hv( J+1f(3j+lj 3%(3’3) 3th V' (p(x,0),t) 2.7)

forall Xe X,t>0 and n>0 where Hr;j)aj =a *a, *...*an,]_[';bj = b,0b,0...00, .

X
By replacing X with 3_"‘ in(2.7), we obtain

[3”” f(gmmj 3" f(?’);j nzgjimflJ > y'((p(;;,Oj,tj > 1/(p(x,0),t),and
(3”“" f(3n+m) le 311:&} % (p ,tJ <v'(p(x,0),t)

:0
Thus,

[3n+m f[ )
3n+m
e n+m -1 Jt
vl 3 f(smm] f — | <v/(e(x0).t)

forall Xe X,t>0, m>0an . Hence

X t
3T f 3"f| — |t |> u| @(x,0),———— |and
( [3”””) (3”“) j #) 90 s 3t

j+l

3"‘ '

n+m 13]t
3m ’ alt
3'“ '

(p(X 0), t and

J a

j=m &

X X t
3 f =3"f| — ||t [<V]| o(X,0),————— (2.8)
V( (3n+m] (3m] j v (0( ) n+m-1 3Jt

j+l

j=m &

3
forall Xe X,t>0,m>0 and n>0. Since & >3 and Z ( j< oo, the Cauchy criterion for convergence in IFNS shows
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X .
that 3" f [S—nj is a Cauchy sequence in (Y U, V). Since (Y M, V)is complete, this sequence converges to some point A(x) Y. Fix

x Xandm=0in (2.8)

,Weobtair;uEB”f(;ﬂj—f(x),tjzll (/)(X,O),% andv(B”f(s j f(x), tJ<v o(X, 0)7 for all t>0 and
n-1

_ n-1 3J
Zj:O j+l ZJ OaJ+1
n> 0. Thus we obtain

n X t £ n L_ £
u(AX) - f(x),t)> y[A(x)—B f(s”j’z} ;{3 f(3n f(x)), ZJ

t
>y (ﬂ(xo)iy
2 —
;aﬁl

V(AX) - f(x),t)< V(A(X) —3" f(gnj ;Jo v[3” f [;n —f (x)), ;j

<v'l p(x,0) v

L | 3]
ZZ j+l

j=0 &

(2

for large N . Taking the limitas N — oo and using the definition of IFNS, we get

(a —3)tj

(A= £ (),1)2 ﬂ'(qo(x,ox .

and

WAX) = f(X),t)< v’((p(x,O), (o ;3”)

y

X
,forall Xe X,t>0. Replace X and y by 3— and — 3 , respectively in(2.3), we have

f P (R ) @) )
{2 () (F @) 5 )

forall X,y € X,t>0. Since

n [ XY
lim 3 ,— |\t [=1,
n%wﬂ( (3” SnJ J
lim,__v/| 3" ( ,yj,t =0,
33

forall X,y € X,t>0. We notice that A satisies (2.1). Therefore A is an additive mapping.

and

To prove the uniqueness of the additive mapping A, assume that there exists a additve mapping A': X —Y which satisfies(2.4).
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For fix X € X, clearly S“A(sx j A(X) and 3" A’(g j A'(x) forall ne N . It follows from (2.4) that

/J(A(X)—A,(X)at):/'{?’nA{yJ S”A’(gnj )
Z”(SnA(s”j Snf(s”j’tj
*”(3”(3“) 3"A'(3“);j

z;{ (3” ,ij (0; Sf)tJ

S ,u'(go(X,O), 0‘(0‘—3)tj

2.3"
and similarly
v(A(X) = A(x),t)< V'(go(x,O), “(2“3‘3”]
Since lim__, 0:2(053n3) = as a >3, we get lim, ’((p(x,o), a(zai;‘gﬁj =1, and |imn_mv’{¢;(x,0), 0‘(20‘3_”3)tJ =0.

Therefore £2(A(X) — A'(x),t)=1 and v(A(X) — A'(x),t)=0, forall t >0. Hence A(X) = A’(X). This completes the proof.
In the following theroem we consider 0 < a <3

Theorem 2.2 Let X be a linear space and let (Z,,u',v') be an IFNS. Let ¢ : X x X — Z be a function such that for some
O<a<3

#((3%,0),t)> 2/ (axp(x,0),tJand

v'(p(3%,0),t) <v'(agp(x,0),t),

Iimn%wy’((p(i%” x,3" y),3”t>=1 and Iimn%v'(go(B"XB" y),3”t): 0 for all X,yeX and t>0. Let (Y,x,v) be an
intuitionistic fuzzy banach space and let f : X =Y bea @ -approximately additive mapping in the sense that

1(3F (3x+y)+ f(x+3y)—4f (x)—4f (y),t)> 1/ (p(x, y),t)and

V(BT (Bx+y)+ f (x+3y)—4f(xX)—4f(y),t)<v(p(X y),1)

forall X,y € X and t > 0. Then there exists a unique additive mapping A: X —Y such that

(AR - (x),1)> y'(qo(x,O), (3‘2“)tjand

V(AKX - f(X),1)< V'(¢(X,O), (3—2a)tj

forall Xe X and t>0.

Proof. The proof of this theoem is similar to Theorem(2.1) . Here we represent the sketch of proof. Put ¥ = 0 in(2.3) we get

y[ f(33x) - f(x),tj > 1/ (p(x,0),t)and

[ f (:X) £ (), tj <V(p(x,0),1),

forall Xe X and t>0.So
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ﬂ( f(331><) — £ (3 x),tJ > y’((p(x,o)y i ja”d

t
a

V[f(3mx) - f(3 x),tJ < v’(w(x,o)yt}
3 “

forall Xe X and t>0.Foreach Xe X,Nn>0,m>0 and t >0, we deduce that

f(3"x) f(3"x) , t
- g = X,0),——— |and
ILI( 3n+m 3m 'u (/)( ) n+m-1 OCJ
= 3]+1
f(3""™x) f(3"x) , t
V( g gn L[SV €0(X10)’W
p 3]+1
f(3"X)

forall xe X, t>0,and m,n>0. Thus, {

function

3n

(2.9)

} is a Cauchy sequence in intuitionistic fuzzy Banach space. There exist a

A: X —Y defined by A(x) =Ilim_ @ and put m=0 in (2.9) we obtain
n

(A~ (x).1)> u’[(p(x,O), (e";‘”jand

V(A(X) - f(X),t)< v'(q)(X,O),

(8- a)tj
2

forall xe X and t>0.

This completes the proof.
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