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1. Introduction 
 

The training of stability problems for functional equations is 
coupled to a inquiry of S.M. Ulam [28] subject to the stability 
of group homomorphisms and confirmatory answer specified 
by D.H. Hyers [12] for Banach spaces. It was further 
generalized and excellent results obtained by number of 
authors [2, 11, 21, 22, 23].  
 

The stability problems of several functional equations have 
been extensively investigated by a number of authors and there 
are many interesting results concerning this problem (see [1, 3, 
7, 8, 10, 13, 15, 18].  
 

In this paper, authors verify the generalized Ulam - Hyers 
stability of the following Euler - Lagrange quadratic functional 
equation  
 

   

   

( )  ( ) 

=

r s r g x r s sg y

g rx sy rsg x y

  

             
 (1.1) 

 

 where sr ,  are positive integers with 0, sr  in 

Intuitionistic Fuzzy Banach Spaces using direct and fixed 
point methods.   
 

2. Definitions On Intuitionistic Fuzzy Banach 
Space 
 

Now, we recall the basic definitions and notations in the 
setting of intuitionistic fuzzy normed space.  
 

Definition 2.1 A binary operation      0,10,10,1:   is 

said to be continuous t -norm if   satisfies the following 
conditions:   
 

    1.    is commutative and associative;  
    2.    is continuous;  

    3.  aa =1  for all  0,1a ;  

    4.  dcba   whenever ca   and db   for all 

 .0,1,,, dcba   
 

Definition 2.2 A binary operation      0,10,10,1:   is 

said to be continuous t -conorm if   satisfies the following 
conditions:   
 

    1.    is commutative and associative;  
    2.    is continuous;  

    3.  aa =0  for all  0,1a ;  

    4.  dcba   whenever ca   and db   for all 

 .0,1,,, dcba   
  

Using the notions of continuous t -norm and t -conorm, 
Saadati and Park [24] introduced the concept of intuitionistic 
fuzzy normed space as follows:  
 

Definition 2.3 The five-tuple ),,,,( X  is said to be an 

intuitionistic fuzzy normed space (for short, IFNS) if X  is a 
vector space,   is a continuous t -norm,   is a continuous 

t  conorm, and  ,  are fuzzy sets on )(0, X  

satisfying the following conditions. For every Xyx ,  and 

0>, ts    

    • 1),(),(  txtx  ,  

    • 0>),( tx ,  

    • 1=),( tx , if and only if 0=x .  

    • 








||
,=),(




t
xtx  for each 0 ,  

    • ),(),(),( styxsytx   ,  

    • [0,1])(0,:),( x  is continuous,  

    • 1=),(lim tx
t




 and 0=),(lim
0

tx
t




,  

    • 1<),( tx ,  

    • 0=),( tx , if and only if 0=x .  

    • 








||
,=),(




t
xtx  for each 0 ,  

    • ),(),(),( styxsytx   ,  

    • [0,1])(0,:),( x  is continuous,  

        • 0=),(lim tx
t




 and 1=),( lim
0

tx
t




.  
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In this case, ),(   is called an intuitionistic fuzzy norm.  
 

Example 2.4 Let  ,X  be a normed space. Let abba =  

and  ,1min= baba   for all [0,1], ba . For all 

Xx   and every 0>t , consider  
 
























0.0

0;>
=),(

0;0

0;>
=),(

tif

tif
xt

x

tx

and

tif

tif
xt

t

tx





 

Then  ,,,, X  is an IFN-space.  
 

The concepts of convergence and Cauchy sequences in an 
intuitionistic fuzzy normed space are investigated in [24].  
 

Definition 2.5 Let  ,,,, X  be an IFN-space. Then, a 

sequence }{= kxx  is said to be intuitionistic fuzzy 

convergent to a point XL  if 

0=),(lim1=),(lim tLxandtLx k
k

k
k



  for all 

0>t . In this case, we write  kasLx
IF

k   
 

Definition 2.6 Let  ,,,, X  be an IFN-space. Then, 

}{= kxx  is said to be intuitionistic fuzzy Cauchy sequence if 

    0=,1=, txxandtxx kpkkpk     for 

all 0>t , and 1,2=p . 
 

Definition 2.7 Let  ,,,, X  be an IFN-space. Then 

 ,,,, X  is said to be complete if every intuitionistic 

fuzzy Cauchy sequence in  ,,,, X  is intuitionistic 

fuzzy convergent  ,,,, X .  
 

Hereafter and subsequently, assume that X  is a linear space, 

  ,,Z  is an intuitionistic fuzzy normed space and 

  ,,Y  an intuitionistic fuzzy Banach space. Now, we use 

the following notation for a given mapping YXg :  such 

that  
 

       yxrsgsyrxgysgsrxgrsrDgsy
rx   )(  )(=  

 where sr ,  are positive integers with 0, sr  for all 

., Xyx     

 
 

3.   IFNS: Stability Results : Direct Method 
 

In this section, we investigate the generalized Ulam-Hyers 
stability of the functional equation (1) in INFS using direct 
method. 
 

Theorem 3.1  Let 1}{1, . Let ZXX :  be a 

function such that for some 1<
)(

<0
2












 sr

p
,  

        
         








tyxptysrxsr

tyxptysrxsr
nnn

nnn

,,,,

,,,,








(3.1) 

 for all Xx   and all 0>t  and  
 

       
        














0=,,lim

1=,,lim
2

2

tsrysrxsr

tsrysrxsr

nnn

n

nnn

n








         

 

(3.2) 
 

 for all Xyx ,  and all 0>t . Let YXg :  be a 

function satisfying the inequality  
 

    
     








tyxtyxDg

tyxtyxDg
sy
rx

sy
rx

,,),,(

,,),,(





                                    
(3.3) 
 

 for all  Xyx ,  and all 0>t . Then there exists a unique 

quadratic mapping YX :Q  satisfying (1.1) and  
 

      
       








tpsrxxtxxg

tpsrxxtxxg

||,,),()(

||,,),()(
2

2





Q

Q

        
(3.4) 
 

for all Xx   and all 0>t .  
  

Proof. Case (i): Let 1= .  

Setting ),( yx  by ),( xx  in (3.3), we have  

          
           








txxtxgsrxsrg

txxtxgsrxsrg

,,,

,,,
2

2





          
(3.5)

 
 

 for all  Xyx ,  and all 0>t . It follows from (3.5) and 

(IFN4), (IFN10), we arrive  
 

 
   

 

 
   

 

























txx
sr

t
xg

sr

xsrg

txx
sr

t
xg

sr

xsrg

),,()),(
)(

(

),,()),(
)(

(

22

22





       
(3.6)  
 

for all Xx   and all 0>t . Substituting x  by   xsr
n

  

in (3.6), we have  
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(3.7) 

for all Xx   and all 0>t . It is easy to verify from (3.7) 
and using (3.1), (IFN4), (IFN10) that  
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(2 2) 2 2 2

1

(2 2) 2 2 2

( ) ( )
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t
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p

g r s x g r s x t
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t
x x
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(3.8) 

for all Xx   and all 0>t . Interchanging t  into tpn
 in 

(3.8), we have  
 

 

 

 

   

 

 

 

 

   

 

1

(2 2) 2 2 2

1

(2 2) 2 2 2

( ) ( )
( , )

( , ),

( ) ( )
( , )

( , ),

n n n

n n n

n n n

n n n

g r s x g r s x t p

r s r s r s

x x t

g r s x g r s x t p

r s r s r s

x x t



 



 



 



 

  

  


 


  
 

   
 

             

(3.9) 
 

 for all Xx   and all 0>t . It is easy to see that  
 

 

 

 

 

 

 

2

11

2( 1) 2
=0

( )
( )

( ) ( )
=

n

n

i in

i i
i

g r s x
g x

r s

g r s x g r s x

r s r s










 


 
                    

(3.10) 
 

 for all Xx  . From equations (3.9) and (3.10), we get  

 

   

 

 

 

   

 

   

 

 

 

 

1

2 2 2
=0

11 1

2( 1) 2 2 2
=0 =0

1

2 2 2
=0

11 1

2( 1) 2
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2 2
)

i
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(3.1

1) 

 for all Xx   and all 0>t . From equations (3.10) and 
(3.11), we have  
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(3.12) 
 

 where  
11

1 2 1 2

=0 =0

= =
nn

j n j n

i i

c c c c and d d d d


       
 

for all Xx   and all 0>t . Hence  
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(3.13) 
 

for all Xx   and all 0>t . Replacing x  by   xsr
m

  in 

(3.13) and using (3.2), (IFN4), (IFN10), we obtain  
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(3.14) 

 for all Xx   and all 0>t  and all 0, nm . Replacing t  

by tpm
 in (3.14), we get  
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(3.15) 

 for all Xx   and all 0>t  and all 0, nm . The relation 

(3.15) implies that  
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(3.16) 
 

holds for all Xx   and all 0>t  and all 0, nm . Since 

2)(<<0 srp   and 









 <

)( 2
0=

i
n

i sr

p
. The Cauchy 

criterion for convergence in IFNS shows that the sequence 

 
  











n

n

sr

xsrg
2

)(
 is Cauchy in   ,,Y . Since   ,,Y  is 

a complete IFN-space this sequence converges to some point 

  Yx Q . So, one can define the mapping YX :Q  by  
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for all Xx   and all 0>t . Hence  
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Letting 0=m  in (3.16), we arrive  
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(3.17) 
 

for all Xx   and all 0>t . Letting n  tend to infinity in 
(17), we have  
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(3.18) 

 for all Xx   and all 0>t . To prove Q  satisfies (1.1), 

replacing ),( yx  by     ),( ysrxsr
nn

  in (3.3) 

respectively, we obtain  
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(3.19) 
 

 for all Xx   and all 0>t . Now,  
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(3.21) 

 for all Xx   and all 0>t . Also  
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for all Xx   and all 0>t . Letting n  in (3.20), 

(3.21) and using (3.22), we observe that Q  fulfills (1.1). 

Therefore, Q  is a quadratic mapping. In order to prove )(xQ  

is unique, let )(' xQ  be another quadratic functional equation 

satisfying (1.1) and (3.4). Hence,  
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 for all Xx   and all 0>t . Hence, )('=)( xx QQ . 

Therefore, )(xQ  is unique. 

Case 2: For 1=  . Putting x  by 
 sr

x


 in (3.5), we get  
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(3.23) 
 

for all  Xyx ,  and all 0>t . The rest of the proof is 

similar to that of Case 1. This completes the proof of the 
theorem.  
  
The following corollary is an immediate consequence of 
Theorem 3.1, regarding the stability of (1.1).  
 

Corollary 3.2  Suppose that a function YXg :  satisfies 
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generalized Ulam - Hyers stability of the functional equation 
(1). 
  

4.   IFNS: Stability Results : Fixed Point Method 
 

In this section, we apply a fixed point method for achieving 
stability of the quadratic functional equation (1). Here, we 
present the upcoming result due to Margolis and Diaz [16] for 
fixed point theory.  
 
Theorem 4.1 [16] Suppose that for a complete generalized 

metric space ),(   and a strictly contractive mapping 

:T  with Lipschitz constant L . Then, for each given 

x  , either  
 

0,            ,=),( 1  nxTxTd nn
 

or there exists a natural number 0n  such that 

(FP1)  <),( 1xTxTd nn
 for all 0nn   ; 

(FP2) The sequence )( xT n
 is convergent to a fixed to a fixed 

point 
y  of T  

(FP3) 
y  is the unique fixed point of T  in the set 

};<),(:{= 0  yxTdy
n
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1
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L
yyd




 for all .y   

Using the above theorem, we now obtain the  
generalized Ulam - Hyers stability of the functional equation 
(1).  
 

Theorem 4.2  Let YXg :  be a mapping for which there 

exists a function ZXXK :  with the double condition 
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1=
1

0=
=

iif
sr

iifsr

i                                                     

(4.2) 
 

and satisfying the double functional inequality  

 

    
     








tyxKtyxDg

tyxKtyxDg
sy
rx

sy
rx

,,),,(

,,),,(




                                  

(4.3) 
 

for all Xyx ,  and all 0>t . If there exists )(= iLL  
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(4.5) 

for all Xx   and all 0>t , then there exists a unique 

quadratic function YX :Q  satisfying the functional 
equation (1) and  
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for all Xx   and all 0>t .  
  

for all Xx   and all 0>t .  
  
Proof. Consider the set  

0}=(0) ,:|{= hYXhh   

and introduce the generalized metric on  , 
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 It is easy to see that (4.7) is complete with respect to the 

defined metric. Define :J  by  
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for all Xx . Now, from (7) and fh,  and all 0>t , 

we have  
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This implies J  is a strictly contractive mapping on   with 

Lipschitz constant L .  
 

 It follows from (4.7),(4.6), we reach and (4.5) for the case 

0=i , we reach 
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 for all Xx   and all 0>t . Again by interchanging x  into 

)( sr

x


 in (4.8) and (4.5) for the case 1=i , we get  
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 for all Xx   and all 0>t . Thus, from (4.8) and (4.9), we 
arrive  
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 Hence property (FP1) holds. By (FP2), it follows that there 

exists a fixed point Q  of J  in   such that  
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for all Xx   and all 0>t . To order to prove YX :Q  
is quadratic the proof is similar to that of Theorem .  
 

By (FP3), Q  is the unique fixed point of J  in the set 
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for all Xx   and and all 0>t . Finally by (FP4), we obtain  
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for all Xx   and all 0>t . So, the proof is complete.  
 The next corollary is a direct consequence of Theorem 4.2 
which shows that (1.1) can be stable.  
 

Corollary 4.3  Suppose that a function YXg :  satisfies 

the double inequality  
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(4.11) 
 

for all Xyx ,  and all 0>t  , where a,  are constants 

with 0> . Then there exists a unique quadratic mapping 

YX :Q  such that the double inequality  
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(4.12) 

 holds for all Xx   and all 0>t .  
  
Proof. Set  
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for all Xx   and all 0>t . Thus, the relation (4.1) holds. It 
follows from (4.4), (4.5) and (4.11) 
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for all Xyx ,  and all 0>t . Also from (4.5), we have  
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for all Xx   and all 0>t . Hence, the inequality (4.6) is 
true for  
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 for all Xx   and all 0>t . Also, for condition 1.  and 

1=i , we get  
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 for all Xx   and all 0>t . Again, for condition 2.  and 

0=i , we obtain  
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for all Xx   and all 0>t . Also, for condition 2.  and 

1=i , we arrive  
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for all Xx   and all 0>t . The rest of the proof is similar 
to that of previous cases. This finishes the proof.  
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