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INTRODUCTION 
 

One of the theorems about triangles that can be used as an 
example is the morley theorem. N.wall (2008: 12), states that 
Morley's theorem is the most interesting and surprising result 
in the 20th century in the field of geometry. Morley states that 
there are any triangles in which each angle is formed by a 
trisector, then two adjacent trisectors will intersect and if the 
intersection points are connected, an equilateral triangle will 
be formed. Bramutu, F.A. (2018: 43), states that there are 
rectangles in which each angle is formed in the inner trisektor, 
then  two adjacent trisektors will intersect and if the 
intersection points are connected a special quadrilateral will be 
formed. 
 

This paper will discuss the application and development of 
Morley's theorem to any triangle and quadrilateral that applies 
to rhombus, kite and isosceles trapezoid using a outer trisektor. 
The idea of proof is to use the concept of congruence and 
trigonometry discussed by Mashadi (a) (2015: 186) and 
Mashadi (b) (2016:185). 
 

Morley’s Theorem in the triangle 
 

Any known ∆ABC, the adjacent inner trisektor will intersect 
and if the intersection is connected it will form an equilateral 
triangle which can be seen in (Figure 1) . 
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Morley's theorem is applied inner angles on triangles and squares, in this paper will be 
developed Morley's Theorem Using the outer angle on triangles and squares (rhombus, kite 
and trapezoid foot). In any triangle, the Morlay theorem using an outer angle produces an 
equilateral triangle and the isosceles trapezoid produces an the kite. The proof in this paper 
uses a simple method with the concept of kekongruenanan and trigonometry concepts.
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Figure 1 Morley’s Theorem in the triangle

Some evidence of Morley's theorem with a different point of 
view has been found by mathematicians stated that the length 

of the triangular side of Morley with 

2� 
 

The development of the morley outher angles
 

Morley’s Theorem on Rhombus
 

Rhombus∎ABCDis known, the adjacent inner trisektor will 
intersect and if the intersection point is connected it will form 
a rectangle that can be seen in (Figure 2).
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The development of the morley outher angles 

Morley’s Theorem on Rhombus 

ABCDis known, the adjacent inner trisektor will 
intersect and if the intersection point is connected it will form 

rectangle that can be seen in (Figure 2). 
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Figure 2 Morley’s theorem on rhombus.
 

From Morley's theorem in a special quadrilateral a 
specialquadrilateral is formed which can be seen in Table 1.

Table 1 Morley's theorem in a special quadrilateral 

No RectangularABCD 
Morley quadrilateral 

EFGH 
1 Square Square
2 Rectangle Rhombus
3 Rhombus Rectangle
4 Isosceles trapezoid Kite
5 Kite Isosceles trapezoid

 

RESULT 
 

The following are the results and discussion Morley’s theorem  
outer trisektor in any triangle and special quadrilateral.
 

Theorem 1 
 

In any ΔABC, adjacent trisektor outer will intersect, if the 
intersection is connected then ΔDEF is formed (Figure 3) 
which will be proved ΔDEF is an equilateral triangle.
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 Development of  the Morley outer trisektor theorem 

in any triangle ∆���. 
 

In any ΔABC, the adjacent outer trisektor will intersect ie 
between lines b_2withc_2, a_1 withb_1anda_2with c_1, 
Suppose a pointD, EandF are intersecting points and if 
three intersection points are connected thenΔDEFis equa

Proof  
 

It will be proven that ∆���is an equilateral triangle showing 
the angle of 60�,which will be proven using the concept of 
congruence. The extension of the trector will intersect, extend
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Theorem 2 
 

Look at ∎����isosceles trapezoid, adjacent ones intersect 
with each outer. If all four cut points are connected, they are 
formed ∎���� which can be seen in (Figure 6
be shown ∎����kite.  
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Figure 6 Morley’stheorem outer trisektor on isosceles trapezoid.
 

Look at  ∎����isosceles trapezoid, outer trisektor
ones will intersect. Suppose a point �, �, � 
of intersection between the trisector lines ��
��, �� with ��and�� with ��. If the four points are connected, a 
produk kite  ����. 
 

Proof 
 

It will be proven that∎���� a kite,by showing the length of 
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CONCLUSIONS 
 

The results of the study are the Morley’s theorem outer 
trisektor on triangles and special quadrilateral. Morley 
theoremthe outer trisektor of an arbitrary triangle is an outer 
triangular equilateral triangleand if∎ABCD kite in the form of 
an ∎EFGHaisosceles trapezoid outer trisektor.
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