MORLEY'S THEOREMOUTER TRISEKTOR ON TRIANGLES AND ISOSCELES TRAPEZOID

Rahmayatul Husna*, Mashadi and Sri Gemawati
Universitas Riau

ARTICLE INFO

Article History:

Received $4^{\text {th }}$ February, 2019
Received in revised form $25^{\text {th }}$
March, 2019
Accepted $18^{\text {th }}$ April, 2019
Published online $28^{\text {th }}$ May, 2019

Abstract

Morley's theorem is applied inner angles on triangles and squares, in this paper will be developed Morley's Theorem Using the outer angle on triangles and squares (rhombus, kite and trapezoid foot). In any triangle, the Morlay theorem using an outer angle produces an equilateral triangle and the isosceles trapezoid produces an the kite. The proof in this paper uses a simple method with the concept of kekongruenanan and trigonometry concepts.

Key words:

Morley's Theorem, inner trisektor and outer trisektor

Copyright©2019 Rahmayatul Husna, Mashadi and Sri Gemawati. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

One of the theorems about triangles that can be used as an example is the morley theorem. N.wall (2008: 12), states that Morley's theorem is the most interesting and surprising result in the 20th century in the field of geometry. Morley states that there are any triangles in which each angle is formed by a trisector, then two adjacent trisectors will intersect and if the intersection points are connected, an equilateral triangle will be formed. Bramutu, F.A. (2018: 43), states that there are rectangles in which each angle is formed in the inner trisektor, then two adjacent trisektors will intersect and if the intersection points are connected a special quadrilateral will be formed.

This paper will discuss the application and development of Morley's theorem to any triangle and quadrilateral that applies to rhombus, kite and isosceles trapezoid using a outer trisektor. The idea of proof is to use the concept of congruence and trigonometry discussed by Mashadi (a) (2015: 186) and Mashadi (b) (2016:185).

Morley's Theorem in the triangle

Any known $\triangle \mathrm{ABC}$, the adjacent inner trisektor will intersect and if the intersection is connected it will form an equilateral triangle which can be seen in (Figure 1) .

Figure 1 Morley's Theorem in the triangle $\triangle A B C$.
Some evidence of Morley's theorem with a different point of view has been found by mathematicians stated that the length of the triangular side of Morley with $\frac{a}{\sin \frac{\angle \alpha}{3}}=\frac{b}{\sin \frac{\angle \beta}{3}}=\frac{c}{\sin \frac{\angle Y}{3}}=$

$$
2 R, \text { adalah } 8 R \sin \frac{\angle \alpha}{3} \sin \frac{\angle \beta}{3} \sin \frac{\angle \gamma}{3} .
$$

The development of the morley outher angles

Morley's Theorem on Rhombus

Rhombus■ABCDis known, the adjacent inner trisektor will intersect and if the intersection point is connected it will form a rectangle that can be seen in (Figure 2).

Figure 2 Morley's theorem on rhombus.
From Morley's theorem in a special quadrilateral a specialquadrilateral is formed which can be seen in Table 1.

Table 1 Morley's theorem in a special quadrilateral

No	Rectangular $\boldsymbol{A B C D}$	Morley quadrilateral $\boldsymbol{E F} \boldsymbol{G} \boldsymbol{H}$
1	Square	Square
2	Rectangle	Rhombus
3	Rhombus	Rectangle
4	Isosceles trapezoid	Kite
5	Kite	Isosceles trapezoid

RESULT

The following are the results and discussion Morley's theorem outer trisektor in any triangle and special quadrilateral.

Theorem 1
In any $\triangle A B C$, adjacent trisektor outer will intersect, if the intersection is connected then $\triangle \mathrm{DEF}$ is formed (Figure 3) which will be proved $\triangle D E F$ is an equilateral triangle.

Figure 3 Development of the Morley outer trisektor theorem in any triangle $\triangle A B C$.

In any $\triangle \mathrm{ABC}$, the adjacent outer trisektor will intersect ie between lines b_2withc_2, a_1 withb_1anda_2with c_1, Suppose a pointD, EandF are intersecting points and if all three intersection points are connected then \triangle DEFis equa

Proof

It will be proven that $\triangle D E F$ is an equilateral triangle showing the angle of 60°, which will be proven using the concept of congruence. The extension of the trector will intersect, extend
the $B E$ line to the $D F$ side, for example point L and extension the $C F$ line to the $D E$ side, for example point O, the intersection of $E L$ and $F O$ side, for example point X. Suppose the extension of the $D B$ line to the $E F$ side, for example point M and extension of the $F A$ line to the $D E$ side, for example point P, the intersection $D M$ and $F P$ side, for example point Z. Then extend the EAline to theDFfor example Kand extension DCline to the FEside, for example point N , the intersection EKandDN side, for example pointY.
Look at \triangle FZMand $\triangle \mathrm{DZP}$, note $\angle \mathrm{DZP}=\angle \mathrm{FZMbecause}$ of the alignment
of \angle DZF.Large (\angle ZMF and \angle FZM $)$ and (\angle ZPD and \angle DZF) are unilateral angles. Large $\angle \mathrm{DZP}=\angle \mathrm{FZMbased}$ on the unilateral angle properties then $\angle \mathrm{ZPD}=\angle \mathrm{ZMF}$, because two pairs of angles are equal then $\angle \mathrm{PDZ}=\angle \mathrm{MFZ}$.Look at $\triangle \mathrm{PDZand} \triangle \mathrm{MFZ}$, because there are two equal angles, namely $\angle \mathrm{PDF}=\angle \mathrm{MFD}$ dan $\angle \mathrm{PDZ}=\angle \mathrm{MFZ}$, then large $\angle \mathrm{ZDF}=$ $\angle D F Z$. To be shown using the sine rule will be shown the length ofFZ $=$ MZ.Based on the corner-side-corner postulate then $\quad \triangle \mathrm{DPZ} \cong \triangle \mathrm{FMZ}$. In the same way $\triangle \mathrm{MXF} \cong$ $\Delta \mathrm{EXO}$ and $\triangle \mathrm{EYN} \cong \triangle \mathrm{DYK}$
In $\triangle A B C$, suppose that is $\angle A=\alpha$, $\operatorname{large} \angle B=\beta$,
andlarge $\angle C=180^{\circ}-(\alpha+\beta)$. The size of each outer trisektor at $\triangle \mathrm{ABC}$. Outer trisektorA $=\frac{36 \theta-\angle \mathrm{A}}{3}=120^{\circ}-\frac{\angle \alpha}{3}$. Outer trisektorB $=\frac{368-\angle B}{3}=120^{\circ}-\frac{\angle \beta}{3}$. Outher trisektorC $=$

$$
\frac{36 \theta^{3}-18^{q} q-(\alpha+\beta)}{3}=60^{0}-\frac{\alpha+\beta}{3} .
$$

Look at \triangle FAEthere is \angle FAClarge $120^{\circ}-\frac{\angle \alpha}{3}$ becauseOuter trisektor $\angle \mathrm{A}, \angle \mathrm{BAC}=\angle \alpha, \angle \mathrm{ZAB}=\angle \mathrm{YAC}$ based ongeneralisasi format-torricelli, that:

$$
\begin{equation*}
60^{\circ}-\frac{2 \angle \alpha}{3}=\angle \mathrm{ZAB}=\angle \mathrm{YAC} \tag{1}
\end{equation*}
$$

In the same way it is obtained $\angle \mathrm{ZBA}=60^{\circ}-\frac{2 \angle \beta}{3}$ dan $\angle \mathrm{XCB}=-60^{\circ}-\frac{2(\angle \alpha+\angle \beta)}{3}$. Look at $\triangle \mathrm{FXE}$, it is clear that the large angle of the triangle amounts to 180°, so,

$$
\begin{equation*}
\angle \mathrm{EFX}=\frac{\angle \alpha}{3} \tag{2}
\end{equation*}
$$

Then in \triangle DZFthe same thing is obtained

$$
\begin{equation*}
\angle \mathrm{DFZ}=60^{\circ}-\frac{(\angle \alpha+\angle \beta)}{3} \tag{3}
\end{equation*}
$$

Look at $\triangle \mathrm{CFA}$, noted that $\angle \mathrm{FAC}=\angle \alpha+\angle$ ZABand $\angle \mathrm{ACF}=$ $\angle C+\angle B C X$, then:

$$
\begin{equation*}
\angle \mathrm{CFA}=\frac{\angle \beta}{3} \tag{4}
\end{equation*}
$$

 and (4) into the following equation:

$$
\begin{aligned}
& \angle \mathrm{EFD}=\angle \mathrm{EFX}+\angle \mathrm{DFZ}+\angle \mathrm{CFA} \\
& \quad=\frac{\angle \alpha}{3}+60^{\circ}-\frac{(\angle \alpha+\angle \beta)}{3}+\frac{\angle \beta}{3}=60^{\circ}
\end{aligned}
$$

In the same way obtained $\angle \mathrm{DEF}=\angle \mathrm{EFD}=\angle \mathrm{FDE}=60^{\circ}$. Because of the three corners 60°, then \triangle DEFis an equilateral triangle with any outertrisektor $\triangle \mathrm{ABC}$.

Theorem 2

Look at $\square A B C D$ isosceles trapezoid, adjacent ones intersect with each outer. If all four cut points are connected, they are formed $■ E F G H$ which can be seen in (Figure 6), which will be shown $■ E F G H$ kite.

Figure 6 Morley'stheorem outer trisektor on isosceles trapezoid.
Look at $\square A B C D$ isosceles trapezoid, outer trisektor adjacent ones will intersect. Suppose a point E, F, G and H is the point of intersection between the trisector lines d_{1} with a_{1}, d_{2} with c_{1}, b_{2} with c_{2} and b_{1} with a_{2}. If the four points are connected, a produk kite $E F G H$.

Proof

It will be proven that $E F G H$ a kite, by showing the length of the $\operatorname{side} E F=F G$ dan $E H=G H$ and large $\angle F E H=\angle F G H$, Will be indicated by the concept congruence. Large $\angle M C F=$ $\angle N C G$ a straightener from $\angle M C N$, then $\angle M C F=\angle N C G$,so then $\angle F C D=\angle G C B$.Known $\square A B C D \quad$ a isosceles trapezoidt $\angle B C D=\angle C D A$,so that $\angle F C G=\angle G C B=\angle F D C=$ $\angle A D E$. So that it can be shown $\triangle A D E \cong \triangle B G C$. From these results can be shown $\triangle H G B \cong \triangle H E A$ and $\triangle F C G \cong$
$\triangle F D E$ which results in side length $E F=F G$ and $E H=G H$.
Next is shown large Known $\angle F E H=\angle F G H . \triangle F C G \cong$
$\triangle F D E$, so then $\angle C G F=\angle D E F$ because there are two pairs of angles that are equal, then $\angle F E H=\angle F G H$. Because of the length of the side $E F=F G$ and $E H=G H$ and large $\angle F E H=$ $\angle F G H$, proven that quadrilateral EFGH akiteouter trisektor.

CONCLUSIONS

The results of the study are the Morley's theorem outer trisektor on triangles and special quadrilateral. Morley theoremthe outer trisektor of an arbitrary triangle is an outer triangular equilateral triangleand if $\square \mathrm{ABCD}$ kite in the form of an $■$ EFGHaisosceles trapezoid outer trisektor.

References

1. J. Benitez, A unified proof of Ceva and Menelaus's theorems using projective geometry, Journal for Geometry and Graphics, Pekanbaru, 11 (2007), 3944.
2. Baramutu, F.A., Mashadi. dan Gemawati, S., Pengembangan teorema Morley pada segiempat, 2(2018), 41-50.
3. P. Fitriasari, Pemanfaatan Software Goemetry dalam Pembelajaran Matematika, Prosiding Semnas Pendidikan, Palembang, (2016), 57-69.
4. R. Coghetto, Morley trisektor theorem, Formalized Matematics, 23(2015), 75-79.
5. [5] C. Dono;ato, A vektor based proof or Morley trisektor theorem, forum Geometricorum, 13 (2013), 233-235.
6. C.O. dan J.C. Baker, The Morley trisektor theorem, The American Matematical Monthly, 85 (2014), 737745.
7. Mashadi, Geometri Lanjut, UR Press, Pekanbaru, (2015).
8. Mashadi, Geometri, UR Press, Pekanbaru, (2016).
9. Mashadi, Pengajaran Matematika, UR Press, Pekanbaru, (2016).
10. B.J, Mc Cartin, Mysteries of the Equilateral triangle, Hikari, (2010).
11. J.W. Peters, The theorem of Morley, National Matematika Magazine, 16 (1941), 119-126.
12. B. Stonebrige, A simple geometric proof of Morleys trisektor theorem, Applied Probability Trust, (2009), 2-4.
13. M.D. Viliers, A generalization of the FermatTorricelli point, The Mathematical Gazette, 79 (1995), 374-478.
14. M.D. Viliers, A dual to Kosnita's thorem, Mathematics and Informatics Quarterly,6 (1996), 169-171.
15. M.D Viliers, From the Fermat point to the De Viliers point of a Triangle, Proceedings of the 15 Ansual AMESA Congress, University of the Free State, Bloemfontein, (2009), 1-8.
16. N. Walls, An elementary proof of Morleys trisektor theorem, Edinburgh Matematical, 34 (2008), 12-13.

How to cite this article:

Rahmayatul Husna, Mashadi and Sri Gemawati (2019) ' he Development of the Outer Anglesmorley Theorem on Triangles and Isosceles Trapezoid', International Journal of Current Advanced Research, 08(05), pp. 18778-18780.
DOI: http://dx.doi.org/10.24327/ijcar.2019.18780.3598

