

DESIGN AND ANALYSIS OF SEARCH ALGORITHM WITH B
KEY RSA FOR DYNAMIC UPDATION IN CLOUD COMPUTING

Pawan Kumr Tanwar

1,2Department of Computer Science Poornima University, Jaipur
3Department of Computer Application Govt. Engineering College, Bikaner

A R T I C L E I N F O

INTRODUCTION

For the haring of resources by multiple users cloud computing
is the best way. The advantage of cloud may extend from
single user to big organizations due to cloud storage and
access. Software and hardware resource virtualization saves
the financial overhead of maintaining the warehouse of data.
Privacy and security are very big issues in cloud computing.
Various types of software and hardware security methods are
used by the cloud service provider but the solutions are not
sufficient for the protection of data from non authorized data
users. Valuable data should be encrypted before uploading at
cloud space. Encryption of data gives assurance of integrity
and confidentiality of data. For the privacy preservation of data
at cloud server, there is a need of designing an algorithm for
searching which works upon enciphered data.

Number of researchers has contributed to search over
encrypted cloud data. The searching is also classified in some
categories like Boolean search, single or multi keyword search.
In large amount of data the searched keyword may be matched
in number of documents which leads to a tedious work for the
data user for searching a large number of documents. Rank
based search is a solution of this type of work where
documents are ranked according to the relevance of the
keywords.

International Journal of Current Advanced Research
ISSN: O: 2319-6475, ISSN: P: 2319-6505,
Available Online at www.journalijcar.org
Volume 7; Issue 7(H); July 2018; Page No.
DOI: http://dx.doi.org/10.24327/ijcar.2018

Copyright©2018 Pawan Kumr Tanwar., Ajay Khunteta and vishal Goar
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

*Corresponding author: Pawan Kumr Tanwar
Department of Computer Science Poornima University,
Jaipur

Article History:

Received 7th April, 2018
Received in revised form 16th
May, 2018 Accepted 3rd June, 2018
Published online 28th July, 2018

Key words:

Searchable Encryption, Multi keyword, B tree,
CKRSA .

DESIGN AND ANALYSIS OF SEARCH ALGORITHM WITH B-TREE AND COMMUTATIVE
KEY RSA FOR DYNAMIC UPDATION IN CLOUD COMPUTING

Pawan Kumr Tanwar1., Ajay Khunteta2 and vishal Goar

Department of Computer Science Poornima University, Jaipur
Department of Computer Application Govt. Engineering College, Bikaner

 A B S T R A C T

To access the data anytime from anywhere in an easy way and as an
storage at very low cost, organizations are keeping their important data at cloud space. For
the establishment of trust between service provider and data user, we have used
cryptography. For providing the security a method of cryptogra
Further encryption schemes are also have different types as per requirement and one of
them is searchable encryption. Researchers have worked upon development of effective
schemes for searchable encryption. Here we have explored s
cryptography like B-tree and CKRSA for the enhancement of security level which leads to
trust. We have uses the cloud platform Microsoft Azure for the searching upon encrypted
clod data.

For the haring of resources by multiple users cloud computing
is the best way. The advantage of cloud may extend from
single user to big organizations due to cloud storage and
access. Software and hardware resource virtualization saves

ad of maintaining the warehouse of data.
Privacy and security are very big issues in cloud computing.
Various types of software and hardware security methods are
used by the cloud service provider but the solutions are not

data from non authorized data
users. Valuable data should be encrypted before uploading at
cloud space. Encryption of data gives assurance of integrity
and confidentiality of data. For the privacy preservation of data

signing an algorithm for
searching which works upon enciphered data.

Number of researchers has contributed to search over
encrypted cloud data. The searching is also classified in some
categories like Boolean search, single or multi keyword search.

large amount of data the searched keyword may be matched
in number of documents which leads to a tedious work for the
data user for searching a large number of documents. Rank
based search is a solution of this type of work where

ding to the relevance of the

For an economical encrypted data searching method the
researchers club the process of ranking the documents and
multi keyword searching which becomes multi keyword rank
search.

The time and cost of computation are two important criteria
the researchers are using for performance evaluation in the
searching of encrypted cloud data. Time of computation is the
time taken for keyword searching, trapdoor generation etc.
Similarly, cost of computation is the overhead of allocation of
resource and utilization of CPU.

Here we have analyzed the problem of security in cloud space
and proposed a remedy for it. Our solution is abstracted as
follows: -

1. We have defined the problem of multi keyword rank
search upon enciphered cloud data and an effective
solution has been provided by us which satisfies the
function of rank search securely where keyword privacy
is maintained without the leakage of information
regarding relevance score.

2. Our B-tree and CKRSA (Commutative Key RSA) based
encryption and search schemes provide
security in comparison of already available searchable
symmetric encryption schemes.

3. Thorough experimental output shows the efficiency and
viability of the solution made available by us. In the
remaining part of the paper various sections e
various thing like, review of literature, formulation of
problem, performance analysis and conclusion.

International Journal of Current Advanced Research
6505, Impact Factor: 6.614

www.journalijcar.org
; Page No. 14414-14418

//dx.doi.org/10.24327/ijcar.2018.14418.2613

Ajay Khunteta and vishal Goar. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

Pawan Kumr Tanwar
Department of Computer Science Poornima University,

TREE AND COMMUTATIVE
KEY RSA FOR DYNAMIC UPDATION IN CLOUD COMPUTING

vishal Goar3

Department of Computer Science Poornima University, Jaipur
Department of Computer Application Govt. Engineering College, Bikaner

To access the data anytime from anywhere in an easy way and as an advantage of service
storage at very low cost, organizations are keeping their important data at cloud space. For
the establishment of trust between service provider and data user, we have used
cryptography. For providing the security a method of cryptography is encryption scheme.
Further encryption schemes are also have different types as per requirement and one of
them is searchable encryption. Researchers have worked upon development of effective
schemes for searchable encryption. Here we have explored some techniques of

tree and CKRSA for the enhancement of security level which leads to
trust. We have uses the cloud platform Microsoft Azure for the searching upon encrypted

For an economical encrypted data searching method the
researchers club the process of ranking the documents and
multi keyword searching which becomes multi keyword rank

The time and cost of computation are two important criteria
are using for performance evaluation in the

searching of encrypted cloud data. Time of computation is the
time taken for keyword searching, trapdoor generation etc.
Similarly, cost of computation is the overhead of allocation of

CPU.

Here we have analyzed the problem of security in cloud space
and proposed a remedy for it. Our solution is abstracted as

We have defined the problem of multi keyword rank
search upon enciphered cloud data and an effective

een provided by us which satisfies the
function of rank search securely where keyword privacy
is maintained without the leakage of information
regarding relevance score.

tree and CKRSA (Commutative Key RSA) based
encryption and search schemes provides guarantee of
security in comparison of already available searchable
symmetric encryption schemes.
Thorough experimental output shows the efficiency and
viability of the solution made available by us. In the
remaining part of the paper various sections elaborates
various thing like, review of literature, formulation of
problem, performance analysis and conclusion.

Research Article

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Current Advanced Research Vol 7, Issue 7(H), pp 14414-14418, July 2018

14415

Review of Literature

For protecting the data integrity and confidentiality the
encryption of data is an effective method but at the time of
searching it leads to low efficiency. For searching of complex
data queries available schemes are not very effective according
to literature available and therefore important data may be
leaked and can be accessed by unauthorized persons. Li et
al.[7] suggested the cryptography based symmetric searchable
scheme. According to this method the word by word
encryption of document is done. For searching of keyword
same key is being sent by the data user to cloud server. The
limitation of this scheme is that the frequency of keyword will
be revealed. Goh et al.[23] suggested much better scheme than
Song’s method by secure table index construction. For his
scheme Goh [23] used pseudorandom functions and bloom
filter. Bosch et al. extended the scheme provided by Goh et
al.[23] and provided the wild card searching concept but the
limitation of the scheme is that false positives may be
introduced by the bloom filters. Chang et al. suggested a
scheme where an index is formed for every file. This is much
secured scheme in comparison of Goh’s scheme because words
quantity in a document is not disclosed. The drawback of the
method is that it does not support random updates of keywords.
Golle et al.[24] suggested multi keyword searching with single
encryption query but practically it is tedious to execute.
Shareef et al.[16] provided the symmetric searching encryption
scheme later Kamara et al. provided dynamic symmetric
searching scheme where dynamic update (deletion and
addition) of files can be applied. These schemes are for unit
(single) keyword searching.

Wang et al.[10] proposed the scheme PKES (public key
encryption with keyword search). The drawback of this scheme
is inference attack over encryption of trapdoor. Security in th
Wang’s scheme has been improved by Baek et al. and Rhee et
al. Keyword conjunction searching scheme has been proposed
by Baek. The PKES schemes are complex and having high
computation time, therefore these algorithms are not efficient.
Yang et al. proposed a scheme where searching is done by
unique key allotted to data users. Key management is the major
drawback of this scheme. Wang et al.[10] suggested the
conjunction searching, subset and range queries within the
light of function encryption. Katz et al. suggested an extension
in Wang’s scheme by proposing the inner products predicate
encryption and supporting disjunction and conjunction
searching over encrypted data.

A technique is suggested by Kamara S. et al. [17] which is
deployed through link list called an inverted index having file
identifiers is maintained for every keyword. Each node of the
list keeps positional information and next node decryption key.
The nodes of every index are encrypted through random keys
and are uploaded in an array randomly. It is possible to locate
all the files which have the relevant keyword from the position
and decryption key of the first node of an inverted index. Top k
single keyword extraction schemes are suggested in the
material to improve the efficiency of the above scheme.

Wenhai Sun et al. suggested a multi- keyword ranked search
over encrypted data (MRSE) scheme which works upon
similarity ranking. In this scheme searching index is formed
upon the basis of vector space and term frequency. Multi
keyword searching and search output ranking is done through
searching index. By deploying tree structure upon index the

search efficiency can be improved.

Formulation of Problem

Privacy and confidentiality of data is maintained in the
searchable encryption schemes by providing the facility of
keyword searching directly upon encrypted cloud data.
Encrypted data is uploaded to the cloud by data users. Further,
authentic data users can do keyword searching over encrypted
cloud data. Number of things like storage, index and
cryptography etc. are clubbed for the derivation of secure,
efficient algorithms upon encrypted documents.

In the searching model of a cloud three entities are important.
These are owner, cloud server and user. Owner of data
encrypts the documents and corresponding index documents
based on keywords by using algorithms of cryptography.
Encrypted and index documents both are loaded at the server.
For searching the encrypted documents upon cloud server, the
encrypted keywords (trapdoors) are used.

Existing systems

Already available encryption schemes used for secure
searching upon encrypted cloud data with the help of
keywords. Multi keyword searching is supported by these
schemes. In MRSE the measure of similarity (coordinate
matching) has few limitations when evaluating the rank order
of files. First thing is that any keyword appears in the file will
show binary digit 1 for that file in the index vector irrespective
of times of appearance. Naturally it is failing to reflect the
significance of frequently appearing keyword in the file.
Hence it takes no accountability of term frequency. Second
thing is that any keyword appears in only single file is more
significant than a keyword appearing in several files. Hence it
takes no accountability of the term scarcity.

Furthermore, large files with multiple terms shall be favored
by the process of ranking because they may include more
terms than small files. Therefore, due to these drawbacks, the
heuristic function for ranking (coordinate matching) is unable
to provide much accurate searching output. Highly advanced
measure of similarity might be adopted from the community of
plaintext data extraction. Moreover, the complexity of
searching in MRSE is linear to the quantity of files in the set of
data, that becomes non desirable and non efficient for large
amount of files

Proposed system

For the proposed system we have selected a data structure
called B-tree for indexation and to identify the matching
between data files and query. Particularly we have used the
quantity of queried keywords appear in file to calculate the
similarity of the file with the searching query. Every file is
changed to a balanced B-tree as per the keywords and
encrypted using Commutative Key RSA (CKRSA). When the
data user wants to do searching he forms a trapdoor.Our goal is
to use CKRSA algorithm and B-tree data structure for design
and analysis of multi keyword rank search with searchable
index tree. We have used CKRSA for designing a scheme
based upon secured rank multi keyword search upon encrypted
cloud data and then analyzed the performance upon B-tree
based searchable index tree. MS-AZURE platform has been
used by us for the emulation of proposed system and for
studying its performance.

Design and Analysis of Search Algorithm With B-Tree and Commutative Key Rsa For Dynamic Updation in Cloud Computing

 14416

Encryption Module

Information in a document can be dynamically modified by
not affecting the total search performance upon B-tree by
using CKRSA. Again indexation of complete information is
not required if the enciphered indexed information is updated.
In the same way it is not required to again encrypt the
documents of the database when the document is updated. It is
a desired property as it minimizes the time of computing.

Commutative Key with RSA (CKRSA)

One among the optimum public key cryptography methods is
RSA. Although maximum of available RSA schemes suffering
from reordering issues and due to one sided encryption its
robustness is very limited. Hence, for making the system more
efficient and least complicated a protocol known as
Commutative Key RSA (CKRSA) has been provided. The
benefit of using this scheme is that if encryption and
decryption would be done in same order the performance
would not be affected. Standard method of making the
communication private is encryption. Within the number of
available cryptography schemes our system uses CKRSA. The
mathematical model of the algorithm for deploying encryption
is presented as follows:

RSA encryption algorithm can be stated as follows

1. Prime numbers: p ,q
1. 2.Compute n: n = p X q
2. Plain text : M < n
3. 4.Cipher text: C=Mecrsa (Mod n)

B-Tree

Figure – 1 shows the complex data structure called B-tree.
Leaf and index vertex are included in the tree. Total leaf vertex
depth is equal. Every index vertex includes links and
keywords. Every vertex excluding root vertex in the B-tree of
n order must have keys from n to 2n. Every vertex also
includes (total keys +1) links to its child vertices. If root vertex
is an index vertex then it is necessarily having minimum two
children. The searching, insert and delete methods taking time
complexity of only log.

Figure 1 B-tree Data Structure Scheme of searchable encryption

Dynamic updation of data is possible through CKRSA but the
total search performance upon B-tree will not be affected. Re-
index of entire data is not required, if the modification is done
on encrypted index. Moreover, when the modification is done
on document, re-encryption of documents in database is not
required. It is desired property because it minimizes time of
computing.

By using CKRSA (public key encryption scheme) the owner
of data first of all produces public key twin (SK, PK).

The owner of data keeps the key SK public and key PK
private. Files {F| F1, F2……Fn} were enciphered through SK
outputs in an encrypted (cipher) text {CP | CP1, CP2, ….CPn}.
The produced CP is saved in the database of cloud. The
produced index on the basis of B-tree is enciphered through
CKRSA, such that every produced word {K| k1, k2…….kn)
by a file is index in the tree and enciphered through CKRSA.
This outputs in a group of encryptions {E| E1,E2,..En} for every
ej (1<= i <= m) will be defined as e_kj = CKRSA_Enc (SK,
kj), where e_kj denoting enciphered keyword.

Structures of index for big sets of data could not be kept in
primary memory. An alternate is usage of disk. Keeping data
on disk needed distinct method. Using maximum branch of
tree for decreasing the tree height is a possible solution. To
implement the solution we apply complex data structure B-tree
of n order for every file. For filling the vertex of tree the key
are used from n to 2n.Vertex are minimum ½ filled of keys.
Almost every vertex has the key. A links list is appended
between keys. The links are used to traverse within tree.
Generally a vertex of k keys has k+1 link.

Protocol-1, Protocol-2 and Protocol-3 are used to provide the
design for forming and searching the index tree. Protocol-1
and Protocol-2 are used to form the index tree and Protocol-3
explains about the searching process upon index tree.

Protocol -1
Insert_Btree (Rt, K, Item_val)

Input: Rt (Root pgID of the B tree), K (the key) and the
Item_val(Item value).
// Insertion at the time when B-tree have no Item_val

1. VERTEX = Read_Disk (Rt).

2.ifVERTEX_xisfull
(a) b = Page_ Allocate (),c = Page_ Allocate ().
(b) Find the mid item i saved in VERTEX_a.
 Shift the items to the left of item i into
VERTEX_b.
 Shift the items to the right of i into VERTEX_c.
 If VERTEX_a is an index page,
 Then shift the child links of VERTEX_a asrequired.
(c) VERTEX_ a: child [1] = VERTEX_b, VERTEX_a: child
[2]=VERTEX_b.
(d)Write_Disk(VERTEX_a);Write_Disk(VERTEX_b);
Write_Disk(VERTEX_c).

3. Endif

4. Full_Not_ Insert (VERTEX_a; K; Item_val).

Protocol-2
Full_Not_ Insert (VERTEX_a, K, Item_val)

Input: an in-memory page VERTEX_a of a B-tree, the key K
and the value Item_val of a new item.

// This protocol appends when VERTEX_ a page have space.

// Insert the new Item_val into the sub-tree rooted by
VERTEX_a.

1.If VERTEX_a is a leaf page

International Journal of Current Advanced Research Vol 7, Issue 7(H), pp 14414-14418, July 2018

14417

(i) Append the fresh Item_val into VERTEX_a, keeping
Item_valin sorted order.

(ii)Write_Disk(VERTEX_a).

2.else

(i) Seek the child pointer VERTEX_a: child[j] whose key
range includes key.
(ii) VERTEX_d = Read_Disk (VERTEX_a: child [j]).
(iii) if VERTEX_disfull
VERTEX_b=Page_Allocate().

Find the mid item i saved in VERTEX_a.
Shift the items to the right of i into VERTEX_b.
If VERTEX_d is an index page, shift the child
links as required.

Shift i into VERTEX_a. Add a right child link in VERTEX_a
pointing to VERTEX_b

Write_Disk (VERTEX_a); Write_Disk (VERTEX_b);
Write_Disk(VERTEX_d).

If (key < i.K), call Full_Not_ Insert (VERTEX_d; K;
Item_val);

else, call

Full_Not_Insert (VERTEX_b;K;Item_val).
(iv)elseFull_Not_Insert(VERTEX_d;K;
Item_val).

(v)endif
3. end if

Protocol-3
Query_ Search (Rt, trapdoor)

Input: Rt, trapdoor including keyword for searching.

Output: link to the files including
keywords; if not available then NULL.
1. VERTEX_a = Read_Disk (Rt).
2. if VERTEX_a is an index vertex
(a) If an item I exist in VERTEX_a such that i:K = keyword,
returni:value.
(b) Seek the child link a: child [j] whose range of key includes
K.
(c)ReturnQuery_Search(VERTEX_a:child[j],K).
3. Else If item I exists in VERTEX_a such that i:K= keyword,
outputi:value.
Else,outputNULL.
4.End If.

The Read_Disk in Protocol-1 study the relevant page from
disk to memory and outputs the address in memory which is
saved in vertex VERTEX_a. If the vertex VERTEX_a is
totally filled then provide memory for two vertices and save
the relevant locations in VERTEX_b and VERTEX_c. Seek
the mid item save in VERTEX_a. Partition the vertex
VERTEX_a by shifting the digit at left of mid item i in to
VERTEX_b and right digit of mid item i to VERTEX_c. If
VERTEX_a is indexed page then shift the links as required i.e.
VERTEX_a: child [1] = VERTEX_b, VERTEX_a: child [2] =
VERTEX_c. The VERTEX_a is upgraded to upper level. It
raises the tree height. Write back total values at disk from
memory by applying Write_Disk method. Else if VERTEX_a
is having space then call Full _Not_ Insert function. Full
Not Insert function seeks the path through root to leaf, and

appends the Item_val in to leaf. Using child link key range
where the new item key available, the protocol follows the
link. The vertices which are not filled along the path up to the
depth of leaf the protocol loops in recursive way on each of
those vertices. The item is appended at leaf depth.

Analysis of Performance

CKRSA is used to provide security to the proposed system.
The service provider could not able to retrieve the set of files
or index tree till the encrypted (private) key is not disclosed.
CKRSA is also used to encrypt the trapdoor so to maintain the
query and index level security the keywords will not be
extracted from the trapdoor by the service provider. CKRSA is
also used to protect the files so decryption of documents is
impossible due to non availability of key for decryption, which
leads to storage level security. The operations like searching,
inserting and deleting of files must be supported for usability
of database. For big enterprises the large size databases are
used and could not be completely managed by memory.

The efficiency of searching can be improved with the help of
B-tree (balanced) to form the index. Disk input output
operations are minimized through B-tree by copy of page (data
block) having number of records in one span in the memory.
Hence efficiency of searching improves. Moreover, search in a
non sorted and non indexed database results a time complexity
of O(n), here n is quantity of keywords. We get the time
complexity O(log n) for same data, if we use B-tree to index
the data.

C# with visual studio framework is used to develop the
system. Microsoft Azure has been used for implementation.

CONCLUSION

It is finally concluded that for encryption of documents and
index tree CRSA algorithm has been used. Basis of index tree
is basically B-tree. Due to commutative property of CRSA
security of data has been increased and simultaneously privacy
of data also improved. Dynamic updation of documents is
possible here by the use of CRSA and the overall searching
performance over B-tree will not be affected. Moreover, re-
encryption of entire documents is not required if modification
is applied in encrypted documents in the system proposed by
us. Due to this desired property the time of computing is
reduced. In future work, our intention is to check the
performance of the system in the multiuser cloud environment.

References
1. Singhal A.,“Modern information retrieval:A brief

overview”,IEEE Data Engg. Bulletin,vol.24,no.4,pp.35–
43,2001.

2. Cloud Secu. Alliance,"Security Guidance for Critical
Areas of Focus in Cloud Computing",2009.

3. Armbrust M. et-al.,“Above the Clouds: A Berkeley
View of Cloud Computing”,Feb 2009.

4. Lauter K. et-al.,“Cryptographic Cloud Storage”,in
RLCPS, January 2010,LNCS. Springer, Heidelberg.

5. Wenjing Lou et-al.,"Privacy Preserving Multi-Keyword
Ranked Search over Encrypted Cloud Data", Parallel
and Dist. Sys., IEEE Trans. on vol.25,no.1,pp.222-
233,Jan.2014

6. Brinkman R., “Searching in encrypted data”, in Uni. of
Twente, PhD thesis,2007.

7. Li J. et al.,“Fuzzy Keyword Search Over Encrypted

Design and Analysis of Search Algorithm With B-Tree and Commutative Key Rsa For Dynamic Updation in Cloud Computing

 14418

Data in Cloud Computing”,Proc.IEEE
INFOCOM’10,San Diego,CA,Mar.2010.

8. Perrig A., Song Dawn Xiaoding, Wagner D.,“Practical
techniques for searches on encrypted data”,Secu. and
Privacy,2000, Proc. of IEEE Symp.2000,pp.44-55,2000.

9. Persiano G. et- al.,“Public key encryption with keyword
search”,in Proc. of EUROCRYPT,2004.

10. Wang C. et- al.,“Secure Ranked Keyword Search Over
Encrypted Cloud Data”,Proc. ICDCS ’10,2010

11. Li M. et- al. “Authorized Private Keyword Search over
Encrypted Data in Cloud Computing”, 31st
International Conf. of Distributed Computing Sys.,
pp.383-92, 2011.

12. Mamoulis et-al.,“Secure knn computation on encrypted
databases”, in Proc. of SIGMOD, 2009.

13. Varna A.L et-al.,“Confidentiality-Preserving Image
Search:A Comparative Study Between Homomorphic
Encryption and Distance-Preserving Randomization”,
Access, IEEE,vol.2,pp.125-141,2014

14. Fu Zhangjie et-al.,"Multikeyword Ranked Search
Supporting Synonym Query over Encrypted Data in
Cloud Computing", IEEE Conf.,2013.

15. Wang Q. et-al.,"Security Challenges for the Public
Cloud", IEEE Internet Computing, vol.16,no.1,pp.69-
73,2012.

16. Shareef et-al., "Implementation of Secure Ranked
Keyword Search by Using RSSE", Int. Journal of Engg.
Research & Tech., Vol.2, Issue-3, March 2013.

17. Kamara S.et-al.,“Searchable symmetric encryption:
improved definitions and efficient constructions”,in
ACM CCS,2006.

18. Bloom B. H.,“Space/time trade-offs in hash coding with
allowable errors”,Comm. of the ACM, vol.13,
no.7,1970,pp.422–426.

19. Bairas S. and Buyrukbilen S.,“Privacy preserving
ranked search on public key encrypted data”,in Proc.
IEEE Int. Conf. on High Performance Computing and
Comm.,November 2013.

20. Li. H, Sun W., Wang B., Cao N., Li M., Lou W., Hou
and Y.T.,“Privacy-preserving multikeyword text search
in the cloud supporting similarity-based ranking”, Proc.
of the 8th ACMSIGSAC symp. on Info.,comp. and
comm. secu.,ACM,pp.71–82.,2013.

21. Ramzan Z. and Gentry C.,“Single-database private
information retrieval with constant communication
rate”, in ICALP, pp. 803–815,2005.

22. Akki C.B. and Prasanna B.T,“A Survey on
Homomorphic and Searchable Encryption Security
Algorithms for Cloud Computing”, Int.Journal of
Info.Tech. and Comp. Sci.,November 2014.

23. Goh E.J., “Secure Indexes”, Cryptology ePrint Archive,
2003, http://eprint.iacr.org/ 2003/216.

24. Golle P. et-al.,“Secure Conjunctive Keyword Search
over Encrypted Data”,Applied Crypto.and Net. Secu.,
LNCS 3089,Springer-Verlag,pp.31–45,2004.

How to cite this article:

Pawan Kumr Tanwar et al (2018) 'Design and Analysis of Search Algorithm With B-Tree and Commutative Key Rsa For
Dynamic Updation in Cloud Computing', International Journal of Current Advanced Research, 07(7), pp. 14414-14418.
DOI: http://dx.doi.org/10.24327/ijcar.2018.14418.2613
