International Journal of Current Advanced Research

ISSN: O: 2319-6475, ISSN: P: 2319-6505, Impact Factor: 6.614 Available Online at www.journalijcar.org Volume 7; Issue 5(L); May 2018; Page No. 13098-13106 DOI: http://dx.doi.org/10.24327/ijcar.2018.13106.2323

DETERMINATION OF STABILITY CONSTANT AND EVALUATION OF RELATED THERMODYNAMIC PARAMETERS OF COORDINATION COMPOUNDS OF TRANSITION METALS WITH SCHIFF'S BASE LIGANDS

Prem Mohan Mishra¹., Kapileshwar Mishra²., Sanjay Kumar Jha³., Sanjay Kumar Mishra⁴., Panshu Pratik⁵ and Bimalesh Kumar Yadav⁶

^{1,2}Department of Chemistry, M.L.S.M. College, Darbhanga
 ³MMTM College, Darbhanga
 ^{4,5,6}MLSM College, Darbhanga

ARTICLE INFO	A B S T R A C T
Article History:	In continuation of our previous projects here also we are going to report study of the
Received 12 th February 2018	thermodynamic stability constant of transition metal complex with biologically active
Received in revised form 0 th	Schiff's base ligands. Here we are going to present results of determination of stability
March 2018 Accorted 26 th April 2018	constant of complex compounds using ligands derived from 3- Hydroxy phenyl- 8-methyl
Dublished online 20th Mar. 2019	coumarin imide (HPMCI) with bivalent transition metals of first transition series. Schiff's
Published online 28 May, 2018	

Key words:

Coordination compound, stability constant, Thermodynamic parameters, Schiff's base ligand, Bivalent transition metal ions, Irving Rossotti titration technique, Calvin – Bjerrum. method amino phenol. Nitrate salts of bivalent cobalt, nickel, copper, zinc and manganese were estimated by standard methods ligand was analysed for elements by reported methods. pH metric titrations were carried out in an inert atmosphere of nitrogen gas at constant ionic strength of 0.1 M KNO₃ with the help of digital pH meter. Stability constant of complexes of these metals with the ligands were computed at two temperature i.e. 298 K and 308 K by Irving-Rossotti titration technique¹ modified by Calvin-Bjerrum².

base ligands were synthesized by the condensation of 8-methyl coumarin with 3 -

The stability constant values of metals for the given ligand at both the temperatures were found to be Cu (II) > Ni (II) > Co(II) > Zn (II) > Mn(II) stability of complex of given metal and given ligand is higher at 298 K than at 308 K.

Copyright©2018 **Prem Mohan Mishra et al.** This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Transition metals play a vital role in various biological processes. Interaction of most of the metal ions with biologically active molecules undergo chelation. These chelates are very important for large number of life processes. Out of various ligands Schiff's base are one of the important ligands. These are versatile and most privileged ligands.

Schiff's bases are able to stabilize many different metals in various oxidation states, controlling the performance of metals in large variety of useful applications like biolgocial, medicinal, clinical, analytical and industrial in addition to their important roles in catalysis and organic synthesis. Transition metal complexes with Schiff's base ligands have played a very important role in the development of modern co-ordination chemistry. A large number of coordination compounds of transition metals with Schiff's base ligand have been synthesized and their structure determined with help of chemical and spectroscopic methods³⁻¹⁴.

*Corresponding author: Prem Mohan Mishra Department of Chemistry, M.L.S.M. College, Darbhanga These are also screened for their biological and chemical sensitivity but little is done for the determination of their thermodynamic stability. Therefore we have under taken the title project for our investigation.

Experimental

The solvent (1,4-dioxane) was purified by standard method ($\mu = 1.436$). Anala R grade E Merck German sample of sodium hydroxide, KNO₃ and BDH of HNO₃ was used, Double distilled CO₂ free water was used throughout the experiment.Anala R grade metal nitrates were used to prepare metal ion solution and these were standardized using EDTA titrations and gravimetrically.

Different reagents used for the estimation of metal ions

Metals	Volu. Metric	Gravi metric
Со	EDTA with Xylenol	lpha - nitroso - eta -
	orange	naphthol
Ni	"	Dimethyl glyoxime
Cu		Iodometrically
Zn	"	Pyrophosphate
Mn	"	8-Hydroxy quinoline

3- Hydroxy Phenyl 8-Methyl coumarin Imide (HPMCI) was prepared by the condensation of 8-methyl coumarin with 3 - amino phenol in alkaline medium.

pH metric titrations were done in 1, 4-dioxane water (1:1) medium at constant ionic strength of standard KNO_3 at two different temperature i.e. 298 and 308 K. A set of 3 titrations (acid, acid + ligand, acid + ligand + metal ion) were carried out for each metals, at each temperature at a given ionic strength. In every case the reproducibility. The results obtained are tabulated.

RESULTS

A graph was plotted between pH meter reading [B] and volume of alkali added in each case, graph - 1. The three titration curves obtained for each metal ions are acid titration curve (a), ligand titration curve (b) and complex titration curve (c) respectively.

Table No 1 concentrations used in the experiment

Metal / Ions	V°(mL)	Y	N ⁰	EO	\mathbf{T}_{L}^{O}	\mathbf{T}_{M}^{O}
Co (II)	100	1	1.0 (M)	1.0 x 10 ⁻² (M)	2.4 x 10 ⁻³ (M)	5.0 x 10 ⁻⁴ (M)
Ni(II)	100	1	1.0 (M)	1.0×10^{-2} (M)	2.4×10^{-3} (M)	5.0×10^{-4} (M)
Cu(II)	100	1	1.0 (M)	1.0×10^{-2} (M)	2.4×10^{-3} (M)	5.0×10^{-4} (M)
Zn(II)	100	1	1.0 (M)	1.0×10^{-2}	2.4×10^{-3}	5.0×10^{-4}
Mn(II)	100	1	1.0 (M)	1.0 x 10 ⁻² (M)	2.4 x 10 ⁻³ (M)	5.0 x 10 ⁻⁴ (M)

The values of volumes (V₁, V₂, & V₃) corresponding to the same pH values were read from acid, ligand and complex titration curves (a), (b) and (c) respectively from the experimental curves given in graph - 1 at temperature 298 K and graph-2 at temperature 308 K separately for each metal ions.

Table No 2 Volume of alkali consumed in different titrations

	Ligand	HPMCI			Ten	np. 298 ±	K
μ	$l^0 = 0.10$	0 (M) KN	O ₃	Water-di	oxane medi	um (v/v) = 1	1:1
				pH-n	neter read	ing (B)	
Vol. of alkali	\mathbf{H}^{+}	H⁺+ L	$H^+ + L +$	$H^+ + L +$	$H^+ + L +$	$H^+ + L +$	$H^+ + L +$
added in mL			Co(II)	Ni(II)	Cu(II)	Zn(II)	Mn(II)
0.0	4.04	4.34	4.3	4.32	4.32	4.32	4.30
0.1	4.12	4.42	4.42	4.45	4.44	4.46	4.40
0.2	4.32	4.56	4.54	4.56	4.52	4.54	4.52
0.3	4.52	4.86	4.82	4.85	4.84	4.80	4.86
0.4	4.94	5.30	5.30	5.30	5.30	5.44	5.32
0.5	5.12	5.52	5.52	5.50	5.54	5.52	5.52
0.6	5.34	5.72	5.70	5.72	5.72	5.76	5.74
0.7	5.8	6.14	6.12	6.10	6.12	6.10	6.12
0.8	6.62	6.76	6.74	6.76	6.80	6.76	6.82
0.9	11.14	11.26	8.10	8.12	8.52	8.60	8.82
1.0	12.8	13.10	9.42	9.46	9.24	9.14	9.30
1.1 1.2	13.06 13.08	13.42 13.50	9.86	9.92	9.60	10.3	9.82

Calculation of n_A , $n \& P^L$

The
$$\overline{n}_{A}$$
, $\overline{n} \& P^{L}$ are calculated using standard expressions^{3,4}
 $\overline{n}_{A} = 1 + [(V_{1}-V_{2}) / (V^{O}+V_{1})] (N^{O}+E^{O}) / T_{L}^{O}$
 $\overline{n} = [(V_{3}-V_{2}) / (V^{O}+V_{1})][(N^{O}+E^{O}) / T_{M}^{O}] \ge 1 / \overline{n}_{A}$
 $P^{L} = \log \left[\sum_{j=0}^{j} \beta_{j}^{0} H (1 / \text{anti} \log B)(V^{O}+V_{3}) / (T_{L}^{O} - \overline{n} T_{M}^{O}) V^{0}\right]$

Proton ligand stability constant:

The ligand titration curve is above the acid titration curve showing the basic nature of ligand and it is well separated from the acid titration curve at pH=6.2 at temp 298 K. The ligand curves run parallel to the acid titration curve indicating the smooth dissociation of the ligand.

The values of n_A at various pH reading [B] was calculated from the acid and ligand titration curves and recorded in table no. 3 at temperature 298 K and in table no. 15, at temperature 308 K.

The formation curve obtained from the plot of n_A vs [B] extends from 0.46 to 0.96 (graph no. 3) at temp 298 K and from 0.36 to 0.98 (graph no.-4) at temperature 308 K. As the

values of n_A does not go beyond 1.0 so this indicates that the ligand is monoprotonic.

Dissociation of ligand may be given as

HL
$$\longrightarrow$$
 $T + H^+$

The value of proton ligand stability constant was calculated by half integral method and it was further corroborated by linear plot method^{3, 4}. (log \overline{n}_A / (1 - \overline{n}_A) vs [B] graph no.-5 at 298 K and graph no.-6 at 308 K.

Graph No 1 Experimental curve with ligand HPMCI

Determination of Stability Constant And Evaluation of Related Thermodynamic Parameters of Coordination Compounds of Transition Metals With Schiff's Base Ligands

Ligand-HPMCI			Temp.: 298 ±1K		
[B]	V ₂ -V ₁	\overline{n}_A	$\log \overline{n}_A / (1 - \overline{n}_A)$		
5.2	0.005	0.8878			
5.4	0.006	0.8842			
5.6	0.006	0.8842			
5.8	0.007	0.881			
6.0	0.007	0.88			
6.2	0.008	0.874			
6.4	0.008	0.8726			
6.6	0.009	0.8684			
6.8	0.016	0.861			
7.0	0.012	0.844			
7.2	0.014	0.836			
7.4	0.016	0.836	1.2640		
7.6	0.018	0.828	1.2092		
7.8	0.016	0.8198	1.0400		
8.0	0.020	0.812	1.0250		
8.2	0.024	0.7988	0.8534		
8.4	0.026	0.7868	0.7944		
8.6	0.034	0.7638	0.7022		
8.8	0.036	0.744	0.6322		
9.0	0.042	0.7197	0.4580		
9.2	0.050	0.6956	0.3906		
9.4	0.054	0.6796	0.3492		
9.6	0.062	0.6556	0.2906		
9.8	0.064	0.6276	0.2270		
10.0	0.072	0.5998	0.4674		
10.2	0.082	0.5676	0.4030		
10.4	0.090	0.532	0.3340		
10.6	0.104	0.488	0.2534		
10.8	0.112	0.478	0.0490		
11.0	0.124	0.4674	0.0312		
11.2	0.140	0.4396	-0.2050		

Table No 3

Plot of n_A Vs [B]

Graph No 5 Formation Curve of ligand HPMCI Plot of log n_A / (1 - n_A) Vs [B]

Co(II) - HPMCI System

The complex titration curve of the system crossed the ligand mixture curve at pH = 5.26 indicating the start of complex formation. As the metal titration curves did not join up and run parallel to the ligand titration curve indicating liberation of extra proton due to the hydrolysis of metal ions. Precipitation was observed at $P^{H} = 9.0$. Hence, in order to preclude error due

to hydrolysis in the calculation of $\boldsymbol{\mathcal{N}}$, only the lower \boldsymbol{P}^{H} regions

of titration curves were used. The values of n extend between 0.22 to 1.86 (graph no.-7(a), table no.-4) at temperature 298 K and 0.20 to 1.82 (graph no.-7(d), table no. 16) at temperature 308 K indicating the formation of ML₁ and ML₂ type of

complexes. From the formation curve of n vs P^L (graph no. 7(a), at temperature 298 K and (graph no. 7(d)), at temperature 308 K, the values of log K₁ and log K₂ at the given two temperatures were calculated by half integral method. It was further verified by the mid- point calculation

method and the linear plot of $\log n / (1 - n)$ vs p^L (graph no. 7(b), table no. 5) at 298K and (graph no. 7(e), table no. 17) at temperature 308 K, and log (2 - n) / (n - 1) vs p^L (graph no. 7(c), Table no. 5,) at temperature 298 K and (graph no. 7(f), Table no. 17) at temperatures 308 K respectively.

NI(II) - HPMCI System

The complex titration curve on the system crossed the ligand mixture curve at pH = 4.90 indicating the start of complexation. The curve increased regularly upto pH = 7.48 indicating constant rate of release of proton and then complex titration curve diverges indicating quick but incomplete dissociation of ligand. No turbidity appears, hence hydrolysis

does not take place. Values of n falls in the range of 0.04 to 1.96 at temperature 298 K (table no.- 6, graph no.-8(a)) and 0.10 to 1.95 at temperature 308 K (table no. 18, graph no. The values of log K_1 and log K_2 were 8(d)). calculated by half integral method and verified by mid point slope method and linear plot of log n/(1-n) vs P^L (graph no. - 8(b), Table no. - 7) at temperature 298 K and (graph no. 8(e), table no. 19) at temperature 308 K. log (2-n)/(n-1) vs P^L. (Table no.-7, graph no. 8(c)) at temperature 298 K and (table no. -19, graph

Cu (II)-HPMCI System

no.- 8(f)) at temperature 308 K. respectively.

Complex titration curve crossed the acid titration curve and well separated from ligand titration curve at pH = 5.92. The curve increased regularly and run parallel to the ligand titration curve upto pH = 9.2.During the titration equilibrium is attained very quickly, no turbidity appears, hence hydrolysis does not

take place. The values of n extended from 0.08 to 1.82 at temperature 298 K and 0.16 to 1.86 at temperature 308 K indicating the formation of ML and ML₂ type of complexes, at both temperatures (table no.– 8, graph no. 9(a)) at 298 K and (table no.– 20; graph no. 9(d)) at temperature 308K.

Formation curves (graph no.- 9(a), and graph no.- 9(d)) are also very symmetrical, it gave the values of log K_1 and log K_2 by half integral method at given two temperatures. These

values were further verified from mid-point slope method and

the linear plot of log (n/1-n) vs P^L (graph no. 9(b), table no. 9) at temperature 298 K and (graph no. 9(e), table no. 21) at

temperature 308 K. and log (2 - n)/(n - 1) vs P^L. (table no.-9, graph no.-9(c)) at temperature 298 K & (table no. - 21, graph no. - 9(f)) at temperature 308 K respectively.

Zn (II)-HPMCI System

Metal ligand titration curve is well separated from ligand titration curve at pH = 5.92 and complex titration curve diverges at higher pH, indicates the incomplete dissociation of ligand. For the calculation of

value of \mathcal{N} only the symmetrical region of the curve were

considered. The values of \mathcal{N} extended from 0.12 to 1.72 at temperature 298 K and from 0.40 to 1.86 at temperature 308 K, indicating the formation of ML and ML₂ type complexes only. (table no. - 10, graph no. - 10(a)): at temperature 298 K and (table no. - 22, graph no. 10(d)) at temperature 308K.Curves (graph no.-10(a)) at temperature 298 K and (graph no. 10(d)) at 308 K by using halfintegral method at two given temperatures. These values of log K₁ and log K2 were further verified by the mid-point slope calculation

method and straight-line plot of log $\mathcal{N}/(1-\mathcal{N})$ vs P^L (Table no. - 11, graph no. 10(b)) at temperature 298 K and (table no. 23, graph no.

10(e)) at temp. 308 K. and plot of log (2-n) / (n - 1). (table no. -11, Graph no. - 10(c)) at 298 K and (table no. - 23, graph no. - 10 (f)) at temperature 308 K.

Mn - (II) HPMCI System

Complex titration curve are well separated from ligand titration curve at pH = 6.46 Complex titration curves diverge at higher pH indicating incomplete dissociation of ligand and lower rate of dissociation at higher pH.No turbidity is observed and hydrolysis does not take

place. The values of n extended from 0.06 to 1.71 at temperature 298 K and from 0.04 to 1.72 at temperature 308 K indicating the formation of ML and ML₂ type complexes at both the temperature (table no. - 12, graph no.-11(a)); at temperature 298 K and (table no. 24, graph no.-11(d)) at temperature 308 K.

Formation curves were nearly symmetrical (graph no.-11(a)) at temperature 298 K and (graph no.-11(d)) at temperature 308 K; The values of log K1 and log K2 were calculated from the formation curve by half-integral method. It was further corroborated from mid-point

slope method and linear plot of log n/(1-n) (table no. 13, graph no. 11(b)) at temperature 298 K and (table no. 25, graph no. 11(e)) at

temperature 308 K and plot of log (2-n)/(n-1) vs P^L. (table no. 13 graph no.-11(c)) at temp. 298 K and table no. 25, graph no. 11(f), at 308 K.

Table No 4

Co (II) + HPMCI

Temp: 298 \pm 1 K

[B]	V ₃ -V ₂	\overline{n}	PL
5.0	0.006	0.2220	8.1652
5.2	0.008	0.3242	7.9760
5.4	0.016	0.4266	7.7864
5.6	0.020	0.5912	7.6016
5.8	0.036	0.5766	7.4126
6.0	0.044	0.7872	7.2414
6.2	0.050	1.8660	7.0636
6.4	0.062	1.2840	6.8856
6.6	0.070	1.58406	6.7090
6.8	0.076	1.7966	6.5366
7.0	0.092	1.8680	6.3740

		Tab	le No 5		
Co (II) + HPMO	CI				Temp: 298
$\log n / (1 - $	\overline{n})	PL	log (2 -	<u>n</u> /(– N -1) I
-0.9568	3	8.9756	0	.0260	7.7
-0.4136	5	8.7852	-(0.3620	7.5
0.4214		8.4130			
0.7906		8.2404			
$N_{\rm H}$ (II) + HPM(CI	Tab	le No 6	т	amn · 208 +
NI(II) + III M				ו הו	<u> </u>
_	[B]	V ₃ -V ₂	n	P	,
	5.0	0.006	0.0408	8 8.15	92
	5.2 5.4	0.008	0.1014	+ /.90	42
	5.4	0.010	0.2430) /.// 1 7.50	32
	5.8	0.010	0.400	2 741	26
	6.0	0.036	0.8038	3 7.23	20
	6.2	0.044	0.9930	7.05	22
	6.4	0.050	1.2308	6.87	84
	6.6	0.064	1.4636	6.70	66
	6.8	0.084	1.6970	6.53	64
	7.0	0.092	1.9686	6.37	36
		Tabl	le No 7		
Ni (II) + HPMC	Ι			Tem	np:298 ± 1
 امg <i>1</i> /(1	$-\frac{n}{n}$	$\mathbf{P}^{\mathbf{L}}$		/(<i>n</i> 1) P ^L
-0.945	6	8.9642	0.62	.24	7.878
-0.488	0	8.7772	0.06	24	7.706
-0.160	8	8.5926	-0.46	520	7.536
0.204	2	8.4126			
$T_{\rm H}$ (II) + IIDMC	T	Tabl	le No 8	Tommo	ratura 200 +
Lu (II) + HPMC			_	Tempe	$\frac{1}{-}$
	[B]	V ₃ -V ₂	п	PL	
	62	0.000			
	0.2	0.008	0.0816	8.5626	
	6.4	0.008	0.0816 0.1642	8.5626 8.3700	
	6.4 6.6	0.008 0.012 0.014	0.0816 0.1642 0.2674	8.5626 8.3700 8.1796	
	6.4 6.6 6.8 7.0	0.008 0.012 0.014 0.016 0.022	0.0816 0.1642 0.2674 0.3720 0.4794	8.5626 8.3700 8.1796 7.9894 7.7996	
	6.4 6.6 6.8 7.0 7.2	0.008 0.012 0.014 0.016 0.022 0.026	0.0816 0.1642 0.2674 0.3720 0.4794 0.6152	8.5626 8.3700 8.1796 7.9894 7.7996 7.6126	
	6.4 6.6 6.8 7.0 7.2 7.4	$\begin{array}{c} 0.008\\ 0.012\\ 0.014\\ 0.016\\ 0.022\\ 0.026\\ 0.032\\ \end{array}$	0.0816 0.1642 0.2674 0.3720 0.4794 0.6152 0.7634	8.5626 8.3700 8.1796 7.9894 7.7996 7.6126 7.4274	
	6.4 6.6 6.8 7.0 7.2 7.4 7.6	$\begin{array}{c} 0.008\\ 0.012\\ 0.014\\ 0.016\\ 0.022\\ 0.026\\ 0.032\\ 0.044 \end{array}$	0.0816 0.1642 0.2674 0.3720 0.4794 0.6152 0.7634 0.9410	8.5626 8.3700 8.1796 7.9894 7.7996 7.6126 7.4274 7.2466	
	6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8	$\begin{array}{c} 0.008\\ 0.012\\ 0.014\\ 0.016\\ 0.022\\ 0.026\\ 0.032\\ 0.044\\ 0.050\\ \end{array}$	0.0816 0.1642 0.2674 0.3720 0.4794 0.6152 0.7634 0.9410 1.1436	8.5626 8.3700 8.1796 7.9894 7.7996 7.6126 7.4274 7.2466 7.0686	
	6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0	$\begin{array}{c} 0.008\\ 0.012\\ 0.014\\ 0.016\\ 0.022\\ 0.026\\ 0.032\\ 0.044\\ 0.050\\ 0.062\\ \end{array}$	$\begin{array}{c} 0.0816\\ 0.1642\\ 0.2674\\ 0.3720\\ 0.4794\\ 0.6152\\ 0.7634\\ 0.9410\\ 1.1436\\ 1.3274 \end{array}$	8.5626 8.3700 8.1796 7.9894 7.7996 7.6126 7.4274 7.2466 7.0686 6.8914	
	6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2	$\begin{array}{c} 0.008\\ 0.012\\ 0.014\\ 0.016\\ 0.022\\ 0.026\\ 0.032\\ 0.044\\ 0.050\\ 0.062\\ 0.066\end{array}$	$\begin{array}{c} 0.0816\\ 0.1642\\ 0.2674\\ 0.3720\\ 0.4794\\ 0.6152\\ 0.7634\\ 0.9410\\ 1.1436\\ 1.3274\\ 1.5366 \end{array}$	8.5626 8.3700 8.1796 7.9894 7.7996 7.6126 7.4274 7.2466 7.0686 6.8914 6.7154	
	6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4	$\begin{array}{c} 0.008\\ 0.012\\ 0.014\\ 0.016\\ 0.022\\ 0.026\\ 0.032\\ 0.044\\ 0.050\\ 0.062\\ 0.066\\ 0.082\\ \end{array}$	$\begin{array}{c} 0.0816\\ 0.1642\\ 0.2674\\ 0.3720\\ 0.4794\\ 0.6152\\ 0.7634\\ 0.9410\\ 1.1436\\ 1.3274\\ 1.5366\\ 1.8242 \end{array}$	8.5626 8.3700 8.1796 7.9894 7.7996 7.6126 7.4274 7.2466 7.0686 6.8914 6.7154 6.5528	_
	6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4	0.008 0.012 0.014 0.016 0.022 0.026 0.032 0.044 0.050 0.062 0.066 0.082 Tab	0.0816 0.1642 0.2674 0.3720 0.4794 0.6152 0.7634 0.9410 1.1436 1.3274 1.5366 1.8242 Ie No 9	8.5626 8.3700 8.1796 7.9894 7.7996 7.6126 7.4274 7.2466 7.0686 6.8914 6.7154 6.5528	_
Cu (II) + HPM	6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 4CI	0.008 0.012 0.014 0.016 0.022 0.026 0.032 0.044 0.050 0.062 0.066 0.082 Tab	0.0816 0.1642 0.2674 0.3720 0.4794 0.6152 0.7634 0.9410 1.1436 1.3274 1.5366 1.8242 Ie No 9	8.5626 8.3700 8.1796 7.9894 7.7996 7.6126 7.4274 7.2466 7.0686 6.8914 6.7154 6.5528 Tempera	 ature 298 ±
$Cu (II) + HPM \frac{1}{\log n}$	$\begin{array}{c} 6.2 \\ 6.4 \\ 6.6 \\ 6.8 \\ 7.0 \\ 7.2 \\ 7.4 \\ 7.6 \\ 7.8 \\ 8.0 \\ 8.2 \\ 8.4 \\ \hline 1CI \\ \hline (1-\overline{n}) \end{array}$	0.008 0.012 0.014 0.016 0.022 0.026 0.032 0.044 0.050 0.062 0.066 0.082 Tabl	0.0816 0.1642 0.2674 0.3720 0.4794 0.6152 0.7634 0.9410 1.1436 1.3274 1.5366 1.8242 Ie No 9	8.5626 8.3700 8.1796 7.7996 7.7996 7.6126 7.4274 7.2466 7.0686 6.8914 6.7154 6.5528 Tempera	ature 298 ± P ^L
Cu (II) + HPM $\boxed{\frac{1}{100 \text{ m}}}$	$\begin{array}{c} 6.2 \\ 6.4 \\ 6.6 \\ 6.8 \\ 7.0 \\ 7.2 \\ 7.4 \\ 7.6 \\ 7.8 \\ 8.0 \\ 8.2 \\ 8.4 \\ \hline 1CI \\ \hline (1 - n) \\ 058 \\ \hline 058 \\ \hline 052 \\$	0.008 0.012 0.014 0.016 0.022 0.026 0.032 0.044 0.050 0.062 0.066 0.082 Tabl	0.0816 0.1642 0.2674 0.3720 0.4794 0.6152 0.7634 0.9410 1.1436 1.3274 1.5366 1.8242 le No 9 log (2- <i>H</i>)/	8.5626 8.3700 8.1796 7.7996 7.6126 7.4274 7.2466 7.0686 6.8914 6.7154 6.5528 Tempera (<i>N</i> - 1) 0	$\frac{-}{P^L}$
Cu (II) + HPM	6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 4CI (1- <i>N</i>) 058 362	0.008 0.012 0.014 0.016 0.022 0.026 0.032 0.044 0.050 0.062 0.066 0.082 Tabl	0.0816 0.1642 0.2674 0.3720 0.4794 0.6152 0.7634 0.9410 1.1436 1.3274 1.5366 1.8242 le No 9 log (2- <i>H</i>)/	8.5626 8.3700 8.1796 7.7996 7.6126 7.4274 7.2466 7.0686 6.8914 6.7154 6.5528 Tempera (<i>N</i> - 1) 0 6	$\frac{-}{\mathbf{P}^{L}}$
Cu (II) + HPM 	$\begin{array}{c} 6.2 \\ 6.4 \\ 6.6 \\ 6.8 \\ 7.0 \\ 7.2 \\ 7.4 \\ 7.6 \\ 7.8 \\ 8.0 \\ 8.2 \\ 8.4 \\ \hline 1ct \\ 1ct \\ \hline (1 - n) \\ 058 \\ 362 \\ 261 \\ 262 \\ \hline \end{array}$	0.008 0.012 0.014 0.016 0.022 0.026 0.032 0.044 0.050 0.062 0.066 0.082 Tabl P ^L 8.3702 8.1798 7.9894 7.2925	0.0816 0.1642 0.2674 0.3720 0.4794 0.6152 0.7634 0.9410 1.1436 1.3274 1.5366 1.8242 le No 9 log (2- <i>H</i>)/ 0.775 0.311 -0.064	8.5626 8.3700 8.1796 7.7996 7.6126 7.4274 7.2466 7.0686 6.8914 6.7154 6.5528 Tempera (<i>N</i> - 1) 0 6 6	$\frac{1}{P^{L}}$ ature 298 \pm $\frac{P^{L}}{7.0686}$ 6.8900 6.7154
Cu (II) + HPM 	$\begin{array}{c} 6.2 \\ 6.4 \\ 6.6 \\ 6.8 \\ 7.0 \\ 7.2 \\ 7.4 \\ 7.6 \\ 7.8 \\ 8.0 \\ 8.2 \\ 8.4 \\ \hline 1CI \\ \hline (1 - n) \\ 058 \\ 362 \\ 261 \\ 352 \\ 040 \\ \end{array}$	0.008 0.012 0.014 0.016 0.022 0.026 0.032 0.044 0.050 0.062 0.066 0.082 Tabl P ^L 8.3702 8.1798 7.9894 7.7996 7.6122	0.0816 0.1642 0.2674 0.3720 0.4794 0.6152 0.7634 0.9410 1.1436 1.3274 1.5366 1.8242 le No 9 	8.5626 8.3700 8.1796 7.7996 7.6126 7.4274 7.2466 7.0686 6.8914 6.7154 6.5528 Tempera (<i>N</i> - 1) 0 6 6 144 12	$\frac{1}{P^{L}}$ $\frac{P^{L}}{7.0686}$ $\frac{6.8900}{6.7154}$ $\frac{6.536}{6.536}$
Cu (II) + HPM - log $n / /$ -0.7 -0.4 -0.2 -0.0 0.2(0.5)	$\begin{array}{c} 6.2 \\ 6.4 \\ 6.6 \\ 6.8 \\ 7.0 \\ 7.2 \\ 7.4 \\ 7.6 \\ 7.8 \\ 8.0 \\ 8.2 \\ 8.4 \\ \hline 1CI \\ \hline (1- n) \\ 058 \\ 362 \\ 261 \\ 352 \\ 040 \\ 092 \\ \end{array}$	0.008 0.012 0.014 0.016 0.022 0.026 0.032 0.044 0.050 0.062 0.066 0.082 Tab P ^L 8.3702 8.1798 7.9894 7.7996 7.6132 7.4286	0.0816 0.1642 0.2674 0.3720 0.4794 0.6152 0.7634 0.9410 1.1436 1.3274 1.5366 1.8242 le No 9 $$	8.5626 8.3700 8.1796 7.9894 7.7996 7.4274 7.2466 7.0686 6.8914 6.7154 6.5528 Tempera (<i>N</i> - 1) 0 6 14 2	$\frac{1}{P^{L}}$ $\frac{P^{L}}{6.536}$
Cu (II) + HPM log <i>H</i> / -0.7 -0.4 -0.2 -0.0 0.2t 0.5t	6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 4CI (1- <i>R</i>) 058 362 261 352 040 092	0.008 0.012 0.014 0.016 0.022 0.026 0.032 0.044 0.050 0.062 0.066 0.082 Tabl P ^L 8.3702 8.1798 7.9894 7.7996 7.6132 7.4286 Tabl	0.0816 0.1642 0.2674 0.3720 0.4794 0.6152 0.7634 0.9410 1.1436 1.3274 1.5366 1.8242 le No 9 $10g (2-\overline{n}) / 0.775$ 0.311 -0.064 -0.671 e No 10	$8.5626 \\ 8.3700 \\ 8.1796 \\ 7.9894 \\ 7.7996 \\ 7.6126 \\ 7.6126 \\ 7.6126 \\ 7.6274 \\ 7.2466 \\ 7.0686 \\ 6.8914 \\ 6.7154 \\ 6.5528 \\ \hline \\ $	$\frac{1}{P^{L}}$ $\frac{P^{L}}{7.0686}$ $\frac{6.8900}{6.7154}$ $\frac{6.536}{6.536}$
Cu (II) + HPM 	6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 4CI (1- <i>R</i>) 058 362 261 352 040 092	0.008 0.012 0.014 0.016 0.022 0.026 0.032 0.044 0.050 0.062 0.066 0.082 Tab P ^L 8.3702 8.1798 7.9894 7.7996 7.6132 7.4286 Tab	0.0816 0.1642 0.2674 0.3720 0.4794 0.6152 0.7634 0.9410 1.1436 1.3274 1.5366 1.8242 le No 9 log (2- <i>H</i>)/ 0.775 0.311 -0.064 -0.671 e No 10	8.5626 8.3700 8.1796 7.9894 7.7996 7.6126 7.4274 7.2466 7.0686 6.8914 6.7154 6.5528 Tempera (<i>N</i> - 1) 0 6 14 12	$\frac{1}{10000000000000000000000000000000000$
Cu (II) + HPM 	$\begin{array}{c} 6.2 \\ 6.4 \\ 6.6 \\ 6.8 \\ 7.0 \\ 7.2 \\ 7.4 \\ 7.6 \\ 7.8 \\ 8.0 \\ 8.2 \\ 8.4 \\ \hline 1CI \\ \hline $	0.008 0.012 0.014 0.016 0.022 0.026 0.032 0.044 0.050 0.062 0.066 0.082 Table P ^L 8.3702 8.1798 7.9894 7.7996 7.6132 7.4286 Table V ₃ -V ₂	0.0816 0.1642 0.2674 0.3720 0.4794 0.6152 0.7634 0.9410 1.1436 1.3274 1.5366 1.8242 le No 9 	8.5626 8.3700 8.1796 7.9894 7.7996 7.6126 7.4274 7.2466 7.0686 6.8914 6.7154 6.5528 Tempera (<i>N</i> - 1) 0 6 44 12 Tem	$\frac{1}{10000000000000000000000000000000000$
Cu (II) + HPM - log $\frac{n}{}$ / -0.7 -0.4 -0.2 -0.0 0.20 0.50 Zn (II) + HPMC	$\begin{array}{c} 6.2 \\ 6.4 \\ 6.6 \\ 6.8 \\ 7.0 \\ 7.2 \\ 7.4 \\ 7.6 \\ 7.8 \\ 8.2 \\ 8.4 \\ \hline 1CI \\ \hline (1- n) \\ 058 \\ 362 \\ 261 \\ 352 \\ 040 \\ 092 \\ \hline 1 \\ B \\ 5.0 \\ \hline \end{array}$	0.008 0.012 0.014 0.016 0.022 0.026 0.032 0.044 0.050 0.062 0.066 0.082 Table P ^L 8.3702 8.1798 7.9894 7.7996 7.6132 7.4286 Table V ₃ -V ₂ 0.008	0.0816 0.1642 0.2674 0.3720 0.4794 0.6152 0.7634 0.9410 1.1436 1.3274 1.5366 1.8242 le No 9 	8.5626 8.3700 8.1796 7.9894 7.7996 7.6126 7.4274 7.2466 7.0686 6.8914 6.7154 6.5528 Tempera (<i>N</i> - 1) 0 6 14 12 Tem P L	ature 298 \pm P^L 7.0686 6.8900 6.7154 6.536 mp: 298 \pm 1
Cu (II) + HPM - log N / -0.7 -0.4 -0.2 -0.0 0.20 0.50 Zn (II) + HPMC	$\begin{array}{c} 6.2 \\ 6.4 \\ 6.6 \\ 6.8 \\ 7.0 \\ 7.2 \\ 7.4 \\ 7.6 \\ 7.8 \\ 8.2 \\ 8.4 \\ \hline 1CI \\ \hline (1- n) \\ 058 \\ 362 \\ 261 \\ 352 \\ 040 \\ 092 \\ \hline 1 \\ B \\ 5.0 \\ 5.2 \\ \hline \end{array}$	0.008 0.012 0.014 0.016 0.022 0.026 0.032 0.044 0.050 0.062 0.066 0.082 Table P ^L 8.3702 8.1798 7.9894 7.7996 7.6132 7.4286 Table V ₃ -V ₂ 0.008 0.010	0.0816 0.1642 0.2674 0.3720 0.4794 0.6152 0.7634 0.9410 1.1436 1.3274 1.5366 1.8242 le No 9 	8.5626 8.3700 8.1796 7.9894 7.7996 7.6126 7.4274 7.2466 7.0686 6.8914 6.7154 6.5528 Tempera (<i>N</i> - 1) 0 6 14 12 Terr 7.364 7.172	$\frac{1}{12}$
Cu (II) + HPM - log $n/$ -0.7 -0.4 -0.2 -0.0 0.20 0.50 Zn (II) + HPMC	$\begin{array}{c} 6.2 \\ 6.4 \\ 6.6 \\ 6.8 \\ 7.0 \\ 7.2 \\ 7.4 \\ 7.6 \\ 7.8 \\ 8.0 \\ 8.2 \\ 8.4 \\ \hline 1CI \\ \hline (1- n) \\ 058 \\ 362 \\ 261 \\ 352 \\ 040 \\ 092 \\ \hline 1 \\ B \\ 5.0 \\ 5.2 \\ 5.4 \\ \hline 5.4 \\ \hline 7.8 \\ 7.8 \\ 7.8 \\ 7.8 \\ 7.8 \\ 7.8 \\ 7.8 \\ 7.8 \\ 7.8 \\ 7.8 \\ 7.8 \\ 7.8 \\ 7.8 \\ 7.8 \\ 7.8 \\ 7.8 \\ 7.8 \\ 7.4 \\ 7.6 \\ 7.8 \\ 7.$	0.008 0.012 0.014 0.016 0.022 0.026 0.032 0.044 0.050 0.062 0.066 0.082 Tabl P ^L 8.3702 8.1798 7.9894 7.7996 7.6132 7.4286 Tabl V ₃ - V ₂ 0.008 0.010 0.012	0.0816 0.1642 0.2674 0.3720 0.4794 0.6152 0.7634 0.9410 1.1436 1.3274 1.5366 1.8242 le No 9 log (2- <i>N</i>)/ 0.775 0.311 -0.064 -0.671 e No 10 	8.5626 8.3700 8.1796 7.9894 7.7996 7.9894 7.7996 7.6126 7.4274 7.2466 7.0686 6.8914 6.7154 6.5528 Tempera (<i>N</i> - 1) 0 6 44 .2 Terr P ^L 7.364 7.172 6.982	$\frac{1}{100}$
Cu (II) + HPM 	6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 4CI (1- <i>N</i>) 058 362 261 352 040 092 CI B 5.0 5.2 5.4 5.6	0.008 0.012 0.014 0.016 0.022 0.026 0.032 0.044 0.050 0.062 0.066 0.082 Tabl P^L 8.3702 8.1798 7.9894 7.7996 7.6132 7.4286 Tabl V₃-V₂ 0.008 0.010 0.012 0.014	0.0816 0.1642 0.2674 0.3720 0.4794 0.6152 0.7634 0.9410 1.1436 1.3274 1.5366 1.8242 le No 9 	8.5626 8.3700 8.1796 7.9894 7.7996 7.6126 7.4274 7.2466 7.0686 6.8914 6.7154 6.5528 Tempera (<i>N</i> - 1) 0 6 14 2 2 Terr PL 7.364 7.172 6.982 6.788	$\frac{1}{100}$

Determination of Stability Constant And Evaluation of Related Thermodynamic Parameters of Coordination Compounds of

Graph No. 4 Formation curve of ligand HPMCI

6.00 6.80 7.60 8.40 9.20 10.00 10.80

0.10 0.00

520

Temp. 308±1 K

Acid

ligand

Co(II) Ni(II)

Cu(II)

Zn(II)

-Mn(II)

Temp: 308 ± 1K

 $\log n_A / (1 - n_A)$

1.3260

1.2950

1.2092

1.0470

0.8730

0.8162

0.7486

0.6730

0.6066

0.5462

0.4802

0.4096

0.3442

0.2840

0.2184

0.1412

0.2752

0.2040

0.0442

-0.0494

-0.2262

 $\mu^0 = 0.10 \text{ (M) KNO}_3$

Table No 16

Co (II) + HPMCI

Co (II) + HPMCI

Ni (II) + HPMCI

Temperature: 308 ± 1 K

В	V ₃ - V ₂	n	\mathbf{P}^{L}
5.2	0.008	0.2018	9.0646
5.4	0.010	0.3036	8.8736
5.6	0.014	0.3274	8.6854
5.8	0.022	0.4014	8.5026
6.0	0.028	0.6056	8.3220
6.2	0.040	0.7448	8.1366
6.4	0.052	1.10346	7.9568
6.6	0.064	1.3408	7.7800
6.8	0.076	1.5726	7.6076
7.0	0.082	1.6758	7.4334
7.2	0.090	1.8170	7.2666

Table No 17

Temperature 308 \pm 1 K

$\log \frac{n}{n} / (1-n)$	p ^L	$\log (2 - n) / (n - 1)$	PL
-0.9454	9.0646	0.5994	7.7800
-0.5922	8.8734	0.0578	7.6076
-0.3134	8.6850	-0.4190	7.4332
0.3792	8.3224		
0.7356	8.1362		

Table No 18

Temp : 308 \pm 1K

В	V ₃ -V ₂	\overline{n}	\mathbf{P}^{L}
5.0	0.006	0.1016	7.8648
5.2	0.012	0.2656	7.6796
5.4	0.020	0.4294	7.4946
5.6	0.032	0.6156	7.3132
5.8	0.038	0.8034	7.1322
6.0	0.046	0.9932	6.9520
6.2	0.054	1.2096	6.7766
6.4	0.066	1.4306	6.6024
6.6	0.082	1.6972	6.4364
6.8	0.090	1.9598	6.2722

		Tab	le No 19		
Ni (II) + HPM	CI			Temp:	$308 \pm 1 \mathrm{K}$
$\mu^0 = 0.10(M)$) KNO ₃		Water	: Dioxane =	1:1(v/v)
log <i>N</i>	/(1- <i>n</i>)	PL	$\log(2-n)/$	(<i>n</i> 1)	PL
-0.	9456	8.8646	0.575	6	7.7766
-0.	4418	8.6798	0.121	4	7.6025
-0.	1236	8.4948	-0.362	20	7.4363
0.2	2048	8.3134			
0.0	5116	8.1326 Tah	le No 20		
Cu(II) + HPMO	CI	1 40		Ter	np:308 ± 1K
-	[10]	V. V.		DL	
-	[D]	V 3-V 2	<i>n</i>	r 7.2700	
	0.2 6.4	0.012	0.1640	7.2700	
	6.6	0.010	0.2472	6 8892	
	6.8	0.020	0.5006	6.7018	
	7.0	0.026	0.6314	6.5146	
	7.2	0.036	0.7846	6.3302	
	7.4	0.040	0.9372	6.1460	
	7.6	0.052	1.1220	5.9662	
	7.8	0.060	1.3116	5.7880	
	8.0	0.070	1.5724	5.6206	
_	8.2	0.082	1.8632	5.4584	_
		Tab	le No 21		
Cu (II) + HPM	CI			Temp:	$308 \pm 1 \mathrm{K}$
	_			_	
$\log \frac{n}{n}$ /(1	- <i>n</i>)	PL	$\log (2 - n) /$	(<i>N</i> - 1)	PL
<u>log <i>n</i> /(1</u> -0.707	- <i>n</i>)	Р ^L 8.2704	log (2- <i>N</i>) /	(<i>N</i> - 1)	Р ^L 6.9666
log <i>N</i> /(1 -0.707 -0.349	- <i>n</i>) 72 96	P ^L 8.2704 8.0786	log (2- <i>N</i>) / 0.856 0.344	(<i>N</i> - 1) 66 14	P ^L 6.9666 6.7888
log <i>N</i> /(1 -0.707 -0.349 -0.227	- <i>n</i>) 72 96 70	P ^L 8.2704 8.0786 7.8896	log (2- <i>N</i>)/ 0.856 0.344 -0.122	(<i>N</i> - 1) 56 14 74	Р ^г 6.9666 6.7888 6.6206
log <i>N</i> /(1 -0.707 -0.349 -0.227 -0.233	- <i>n</i>) 72 96 70 82	P ^L 8.2704 8.0786 7.8896 7.5144 7.2206	log (2- <i>N</i>) / 0.856 0.344 -0.12 -0.79	(<i>N</i> - 1) 56 14 74 96	Р ^{г.} 6.9666 6.7888 6.6206 6.4590
log <i>N</i> /(1 -0.707 -0.345 -0.227 -0.233 0.562	- <i>n</i>) 72 96 70 82 6	P ^L 8.2704 8.0786 7.8896 7.5144 7.3306 Tab	log (2- <i>N</i>) / 0.856 0.344 -0.12' -0.799	<u>(N - 1)</u> 66 14 74 96	P ^L 6.9666 6.7888 6.6206 6.4590
$\frac{\log n / (1)}{-0.707}$ -0.349 -0.227 -0.233 0.562 Zn (II) + HPM	- <i>N</i>) 72 96 70 32 6 4 4 4 4 4 4 4 4 4 4 4 4 4	P ^L 8.2704 8.0786 7.8896 7.5144 7.3306 Tab	log (2- <i>H</i>) / 0.856 0.344 -0.12 -0.790 -0.790	(<i>N</i> - 1) 66 14 74 96	$\frac{\mathbf{P}^{L}}{6.9666}$ 6.7888 6.6206 6.4590
$\frac{\log n'(1)}{-0.707}$ -0.349 -0.227 -0.233 0.562 Zn (II) + HPM	- <i>N</i>) 72 70 70 32 6 1CI	P ^L 8.2704 8.0786 7.8896 7.5144 7.3306 Tab	log (2- <i>N</i>) / 0.856 0.344 -0.12 -0.799 Die No 22	(<i>N</i> - 1) 66 14 74 96 Ten	$\frac{\mathbf{P}^{L}}{6.9666}$ 6.7888 6.6206 6.4590 p: 308 ± 1K
$\frac{\log n'/(1)}{-0.707}$ -0.349 -0.227 -0.233 0.562 Zn (II) + HPM	<u>- N)</u> 72 96 70 32 66 1CI B	P ^L 8.2704 8.0786 7.8896 7.5144 7.3306 Tab V ₃ -V ₂	log (2- <i>N</i>) / 0.856 0.344 -0.12' -0.799 le No 22 	(<i>N</i> - 1) 66 74 96 Tem P ^L	$\frac{\mathbf{P}^{L}}{6.9666} \\ 6.7888 \\ 6.6206 \\ 6.4590 \\ \hline \mathbf{p}: 308 \pm 1 \mathbf{K}$
log <i>N</i> /(1 -0.707 -0.349 -0.227 -0.233 0.562 Zn (II) + HPM	$\frac{- n}{72}$ $\frac{72}{96}$ $\frac{96}{70}$ $\frac{32}{66}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	P ^L 8.2704 8.0786 7.8896 7.5144 7.3306 Tab V ₃ -V ₂ 0.006 0.006	log (2- <i>N</i>) / 0.856 0.344 -0.12' -0.799 le No 22 	(<i>N</i> - 1) 66 14 74 96 Ten P ^L 7.4590 7.2600	$\frac{P^{L}}{6.9666}$ 6.7888 6.6206 6.4590 ap: 308 ± 1K
log <i>N</i> /(1 -0.707 -0.349 -0.227 -0.233 0.562 Zn (II) + HPM	$\frac{- n}{72}$ $\frac{72}{96}$ $\frac{96}{6}$ $\frac{100}{32}$ $\frac{100}{6}$ $\frac{100}{6}$	P ^L 8.2704 8.0786 7.8896 7.5144 7.3306 Tab V ₃ -V ₂ 0.006 0.008 0.010	log (2- <i>N</i>) / 0.856 0.344 -0.12' -0.799 le No 22 	(<i>N</i> - 1) 66 14 74 96 Ten P^L 7.4590 7.2698 7.0792	$\frac{P^{L}}{6.9666}$ 6.7888 6.6206 6.4590 ap: 308 ± 1K
log <i>N</i> /(1 -0.707 -0.349 -0.227 -0.233 0.562 Zn (II) + HPM	$ \frac{- n}{72} $ $ \frac{72}{96} $ $ \frac{96}{70} $ $ \frac{32}{66} $ $ 1CI $ $ B $ $ 0.0 $ $ 6.2 $ $ 6.4 $ $ 6.6 $	P ^L 8.2704 8.0786 7.8896 7.5144 7.3306 Tab V ₃ -V ₂ 0.006 0.008 0.010 0.014	log (2- <i>N</i>) / 0.856 0.344 -0.12' -0.799 le No 22 - <i>N</i> 0.406 0.1020 0.1854 0.3718	(<i>N</i> - 1) 66 14 74 96 Ten P^L 7.4590 7.2698 7.0782 6.8896	$\frac{P^{L}}{6.9666}$ 6.7888 6.6206 6.4590 ap: 308 ± 1K
log <i>N</i> /(1 -0.707 -0.349 -0.227 -0.233 0.562 Zn (II) + HPM	<u>- </u> <i>N</i>) 72 96 70 32 6 1CI B 6.0 6.2 6.4 6.6 6.8	P ^L 8.2704 8.0786 7.8896 7.5144 7.3306 Tab V ₃ -V ₂ 0.006 0.008 0.010 0.014 0.020	log (2- <i>H</i>) / 0.856 0.344 -0.12' -0.799 le No 22 - <i>n</i> 0.406 0.1020 0.1854 0.3718 0.5006	(<i>N</i> - 1) 66 14 74 96 Ten P^L 7.4590 7.2698 7.0782 6.8896 6.7014	$\frac{P^{L}}{6.9666}$ 6.7888 6.6206 6.4590
log <i>N</i> /(1 -0.707 -0.349 -0.227 -0.233 0.562 Zn (II) + HPM	<u>- </u> <i>N</i>) 72 96 70 32 6 1CI B 6.0 6.2 6.4 6.6 6.8 7.0	P ^L 8.2704 8.0786 7.8896 7.5144 7.3306 Tab V ₃ -V ₂ 0.006 0.008 0.010 0.014 0.020 0.026	log (2- <i>H</i>) / 0.856 0.344 -0.12' -0.799 le No 22 - <i>n</i> 0.406 0.1020 0.1854 0.3718 0.5006 0.6310	(<i>N</i> - 1) (<i>H</i> - 1)	$\frac{P^{L}}{6.9666}$ 6.7888 6.6206 6.4590 ap: 308 ± 1K
log <i>N</i> /(1 -0.707 -0.349 -0.227 -0.233 0.562 Zn (II) + HPM	- <i>N</i>) 72 96 70 32 6 1CI B 6.0 6.2 6.4 6.6 6.8 7.0 7.2	P ^L 8.2704 8.0786 7.8896 7.5144 7.3306 Tab V₃-V₂ 0.006 0.008 0.010 0.014 0.020 0.026 0.034	log (2- <i>H</i>) / 0.856 0.344 -0.12' -0.799 le No 22 - <i>n</i> 0.406 0.1020 0.1854 0.3718 0.5006 0.6310 0.7846	(<i>N</i> - 1) (<i>N</i> - 1)	$\frac{P^{L}}{6.9666}$ 6.7888 6.6206 6.4590 ap: 308 ± 1K
log <i>N</i> /(1 -0.707 -0.349 -0.227 -0.233 0.562 Zn (II) + HPM	- <i>N</i>) 72 96 70 32 6 1CI B 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4	P ^L 8.2704 8.0786 7.8896 7.5144 7.3306 Tab V₃-V₂ 0.006 0.008 0.010 0.020 0.026 0.034 0.040	log (2- <i>H</i>) / 0.856 0.344 -0.12' -0.799 le No 22 - <i>n</i> 0.406 0.1020 0.1854 0.3718 0.5006 0.6310 0.7846 0.9372	(<i>N</i> - 1) (<i>N</i> - 1)	$\frac{P^{L}}{6.9666}$ 6.7888 6.6206 6.4590 ap: 308 ± 1K
log <i>N</i> /(1 -0.707 -0.349 -0.227 -0.233 0.562 Zn (II) + HPM	- <i>N</i>) 72 96 70 32 6 1CI B 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6	P ^L 8.2704 8.0786 7.8896 7.5144 7.3306 Tab V₃-V₂ 0.006 0.008 0.010 0.020 0.026 0.034 0.040 0.052	log (2- <i>H</i>) / 0.856 0.344 -0.12' -0.799 le No 22 - <i>n</i> 0.406 0.1020 0.1854 0.3718 0.5006 0.6310 0.7846 0.9372 1.1220	(<i>N</i> - 1) (<i>N</i> - 1)	$\frac{P^{L}}{6.9666}$ 6.7888 6.6206 6.4590
log <i>N</i> /(1 -0.707 -0.349 -0.227 -0.233 0.562 Zn (II) + HPM	- <i>N</i>) 72 96 70 32 6 1CI B 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8	P ^L 8.2704 8.0786 7.8896 7.5144 7.3306 Tab V₃-V₂ 0.006 0.008 0.010 0.020 0.026 0.034 0.040 0.052 0.064	log (2- <i>H</i>) / 0.856 0.344 -0.12' -0.799 le No 22 - <i>n</i> 0.406 0.1020 0.1854 0.3718 0.5006 0.6310 0.7846 0.9372 1.1220 1.3116	(<i>N</i> - 1) (<i>N</i> - 1)	$\frac{P^{L}}{6.9666}$ 6.7888 6.6206 6.4590
log <i>N</i> /(1 -0.707 -0.349 -0.227 -0.233 0.562 Zn (II) + HPM	- <i>N</i>) 72 72 72 72 72 72 70 32 6 6 6 6 7 7 7 4 7.6 7.8 8.0 8.2	P ^L 8.2704 8.0786 7.8896 7.5144 7.3306 Tab V ₃ -V ₂ 0.006 0.008 0.010 0.014 0.020 0.026 0.034 0.040 0.052 0.064 0.076 0.088	log (2- <i>H</i>) / 0.856 0.344 -0.12' -0.799 le No 22	(<i>H</i> - 1) 	$\frac{\mathbf{P}^{L}}{6.9666}$ 6.7888 6.6206 6.4590
log <i>N</i> /(1 -0.707 -0.349 -0.227 -0.233 0.562 Zn (II) + HPM	- <i>N</i>) 72 96 70 32 6 1CI B 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2	P ^L 8.2704 8.0786 7.8896 7.5144 7.3306 Tab V ₃ -V ₂ 0.006 0.008 0.010 0.020 0.026 0.034 0.040 0.052 0.064 0.076 0.088 Tab	log (2- <i>H</i>) / 0.856 0.344 -0.12' -0.799 le No 22	(<i>H</i> - 1) 6 14 74 96 Ten P^L 7.4590 7.2698 7.0782 6.8896 6.7014 6.5146 6.3302 6.1460 5.9666 5.7880 5.6206 5.4584	$\frac{P^{L}}{6.9666} \\ 6.7888 \\ 6.6206 \\ 6.4590 \\ mp: 308 \pm 1K \\ -$
Log <i>N</i> /(1 -0.707 -0.349 -0.227 -0.233 0.562 Zn (II) + HPM	- <i>N</i>) 72 96 70 32 6 1CI B 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2 CI	P ^L 8.2704 8.0786 7.8896 7.5144 7.3306 Tab V ₃ -V ₂ 0.006 0.008 0.010 0.014 0.020 0.026 0.034 0.040 0.052 0.064 0.076 0.088 Tab	log (2- <i>H</i>) / 0.856 0.344 -0.12' -0.799 le No 22 - <i>n</i> 0.406 0.1020 0.1854 0.3718 0.5006 0.6310 0.7846 0.9372 1.1220 1.3116 1.5724 1.8636 le No 23	(<i>N</i> - 1) (<i>H</i> - 1)	$\frac{\mathbf{P}^{L}}{6.9666}$ 6.7888 6.6206 6.4590 mp: 308 ± 1K - 308 ± 1 K
$\frac{\log n / (1)}{-0.707}$ -0.349 -0.227 -0.233 0.562 Zn (II) + HPM Zn (II) + HPM log n / h	$ \begin{array}{r} - n \\ 72 \\ 72 \\ 72 \\ 70 \\ 32 \\ 6 \end{array} $ ICI $ \begin{array}{r} B \\ \hline $	P ^L 8.2704 8.0786 7.8896 7.5144 7.3306 Tab V ₃ -V ₂ 0.006 0.008 0.010 0.014 0.020 0.026 0.034 0.040 0.026 0.034 0.040 0.052 0.064 0.076 0.088 Tab P ^L	log (2- <i>N</i>) / 0.856 0.344 -0.12' -0.799 le No 22	$\frac{(n - 1)}{56}$ Tem PL 7.4590 7.2698 7.0782 6.8896 6.7014 6.5146 6.3302 6.1460 5.9666 5.7880 5.6206 5.4584 Temp: 	$\frac{\mathbf{P}^{L}}{6.9666}$ 6.7888 6.6206 6.4590 $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$
$ \frac{\log n / (1)}{-0.707} - 0.349 - 0.227 - 0.233 - 0.562 $ Zn (II) + HPM Zn (II) + HPM $ \frac{\log n / (1)}{-0.707} - 0.707 - 0.233 - 0.562 $	$ \begin{array}{r} - n \\ 72 \\ 72 \\ 70 \\ 32 \\ 6 \\ \hline $	P ^L 8.2704 8.0786 7.8896 7.5144 7.3306 Tab V ₃ -V ₂ 0.006 0.008 0.010 0.014 0.020 0.026 0.034 0.040 0.026 0.034 0.040 0.052 0.064 0.076 0.088 Tab P ^L 8.2700	log (2- <i>N</i>) / 0.856 0.344 -0.12' -0.799 le No 22	$\frac{(n - 1)}{56}$ Tem $\frac{p^{L}}{74,590}$ 7.2698 7.0782 6.8896 6.7014 6.5146 6.3302 6.1460 5.9666 5.7880 5.6206 5.4584 Temp: $\frac{-}{(n - 1)}$ 6	$\frac{\mathbf{P}^{L}}{6.9666}$ 6.7888 6.6206 6.4590 mp: 308 ± 1K - 308 ± 1 K P ^L 6.9666
$ \frac{\log n / (1)}{-0.707} \frac{-0.349}{-0.349} -0.227 -0.233 \frac{-0.233}{-0.562} Zn (II) + HPM Zn (II) + HPM \frac{\log n / (1)}{-0.707} -0.34 -0.70 -0.34 -0.70 -0.34 -0.74 -0.7 -0.34 -0.7 -0.7 -0.34 -0.7 -0.34 -0.7 -0.34 -0.7 -0.7 -0.34 -0.7 -0.7 -0.34 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 $	$ \begin{array}{r} - n \\ 72 \\ 72 \\ 72 \\ 70 \\ 32 \\ 6 \\ \hline \\ \hline$	P ^L 8.2704 8.0786 7.8896 7.5144 7.3306 Tab V ₃ -V ₂ 0.006 0.008 0.010 0.014 0.020 0.026 0.034 0.040 0.026 0.034 0.040 0.052 0.064 0.076 0.088 Tab P ^L 8.2700 8.0786 .0786	log (2- <i>H</i>) / 0.856 0.344 -0.12' -0.799 le No 22	$\frac{(n - 1)}{6}$ Tem $\frac{p^{L}}{74,590}$ 7.2698 7.0782 6.8896 6.7014 6.5146 6.3302 6.1460 5.9666 5.7880 5.6206 5.4584 Temp: $\frac{-}{(n - 1)}$ 6 0	$\frac{\mathbf{P}^{L}}{6.9666}$ 6.7888 6.6206 6.4590 mp: 308 ± 1K - 308 ± 1 K \mathbf{P}^{L} 6.9666 6.7888

-0.2330

0.5624

7.5146

7.3302

-0.7996

6.4586

Determination of Stability Constant And Evaluation of Related Thermodynamic Parameters of Coordination Compounds of Transition Metals With Schiff's Base Ligands

13104

The values of protonation constant and stepwise stability constant obtained by different computational methods at temperatures 298 K and 308 K are summarized in table 26 The different methods are:-

- 1. half-integral method
- 2. Mid-point calculation method
- 3. Straight line plot method.

Table No 26 Values of protonation constant of ligand and stepwise stability constant of complexes of Co(II), Ni(II), Cu(II), Zn(II) and Mn(II) with ligand HPMCI at temperature 298 K and 308 K

System		Tem	ip 298 K	Tem	p. 308 K
		log K ₁	log K ₂	log K ₁	log K ₂
HPMCI	Α	10.94			10.84
	b	-			-
	с	10.94			10.84
Co (II)	Α	7.58	6.66	7.48	6.56
	b	7.56	6.64	7.46	6.50
	С	7.60	6.66	7.50	6.54
Ni (II)	Α	7.50	6.68	7.40	6.50
	b	7.46	6.60	7.36	6.56
	с	7.44	6.66	7.38	6.58
Cu (II)	Α	6.74	5.78	6.70	5.66
	b	6.66	5.02	6.60	5.60
	С	6.82	5.76	6.76	5.62
Zn (II)	Α	6.60	5.78	6.50	5.66
	b	6.56	5.70	6.56	5.72
	С	6.68	5.86	6.46	5.70
Mn (II)	Α	6.40	5.66	6.32	5.56
	b	6.42	5.62	6.36	5.30
	С	6.46	5.64	6.36	5.58

Table 27 Stepwise and over all stability constant attemperature 298 and 308 K respectively of complexcompounds of various metals.

Ligand-HPMCI water-dioxane medium (V/V) = 1:1

 $\mu^0 = 0.10(M) \text{ KNO}_3$

System	Temp. 298 K			Temp. 308 K			
	log K ₁	log K ₂	\logeta	log K ₁	log K ₂	$egin{array}{c} \log\ eta \end{array}$	
H-HPMCI	10.98	-	10.98	10.86	-	10.84	
Co (II)- HPMCI	7.58	6.66	14.20	7.44	6.56	14.10	
Ni (II)-HPMCI	7.48	6.68	14.10	7.38	6.56	13.90	
Cu (II)-HPMCI	6.76	5.70	12.46	6.68	5.68	12.36	
Zn (II)-HPMCI	6.60	5.78	12.34	6.50	5.70	12.24	
Mn (II)-HPMCI	6.46	5.60	12.08	6.36	5.56	11.84	

Thermodynamic Parameters

The values of the change in free energy (Δ G), change in enthalpy (Δ H) and change in entropy (Δ S) have been calculated at two temperatures at ionic strength 0.10 (M) KNO₃ with the help of standard expressions⁵⁻⁷.

 Table No 28 Values of stepwise free energy changes. Enthalpy changes and entropy changes in the formation of complexes of different metals with the ligand HPMCI

Ligand-HPMCI

Water-dioxane medium (V/V) = 1:1

$$u^{0} = 0.10(M) \text{ KNO}_{3}$$

 $\frac{\text{Temp 298} \pm 1 \text{ K} \text{ Temp 308} \pm 1 \text{ K}}{\text{System} \begin{array}{c} \Delta G_1 \quad \Delta G_2 \quad \Delta G_1 \quad \Delta G_2 \quad \Delta H_1 \quad \Delta H_2 \\ \text{in k.cal in k.cal in in in in in} \end{array} \Delta S_1$

			k. cal	k. cal	k. cal	k. cal	ΔS_2	
							in e.u. at 298 K	
Co (II)	-9.06	-7.66	-9.26	-7.80	-3.6	-3.6	+20.6 +15.0	
Ni (II)	-10.00	-8.90	-10.20	9.06	-4.4	-4.0	+21.6 +16.6	
Cu (II)	-10.16	-8.92	-10.36	-9.08	-4.4	-4.0	+22.2 +16.6	
Zn (II)	-8.86	-7.76	-9.06	-7.86	-4.4	-3.6	+17.6 +15.2	
Mn(II)	-8.62	-7.56	-8.76	-7.70	-3.6	-3.4	+17.0 +14.6	

DISCUSSION

The values of stepwise stability constants and over all stability constants are given in table no. 26. For the given ligand the stability constants of complexes for different metals show the sequence

Cu(II) > Ni(II) > Co(II) > Zn(II) > Mn(II)

This is natural order given by Irving-William¹⁵. A theoretical justification of the order of stability constants follows from the consideration of the reciprocal of the ionic radii and 2^{nd} ionization enthalpy of metal. Calvin-Bjerrum titration technique modified by Irving and Rossotti was used to determine the practical proton ligand and metal ligand stability constants at constant ionic strength maintained by using dilute KNO₃ solution. Irving and Rossotti pointed out that the formation constant of metal chelates can be obtained without converting the pH-meter reading [B] to stoichiometric hydrogen ion concentration and without knowing the stiochiometric concentration of neutral salts added to maintain ionic strength. This method is valid for both aqueous and non-

aqueous medium. The nitrate (NO_3^-) ion has very slight complexing tendency. Therefore, competition between nitrate

ion and the ligand under study is of no importance¹⁶. The stability of the chelates is greatly affected by the electron density around the imino nitrogen (- $C = N -)^{17}$. Higher the electron density around the nitrogen atom, stronger is the metal ligand bond. The difference between the successive stepwise stability constant is large, which suggest that the formation of ML and ML₂ chelates take place. The results obtained are in conformity of our previous studies¹⁸⁻²⁶ and that of other workers²⁷⁻²⁸.

References

- 1. Irving H.M., Rossotti H.S., J. Chem Soc., 2904, 1954.
- 2. Bjerrum, J.: Metal amine formation in aqueous solution. P. Hasse and Sons. Copenhagen 1941.
- Liu C. M.; Xiong R.G.; You X. Z.; Liu Y.J.; Cheung K.K., *Polyhedron*, 15 1996, 45651.
- 4. Djebbar S.S.; Benali B.O.; Deloume J.P., Transit Metal Chem., 23, 1998,443.
- 5. Hamada Y.J., IEEE Trans. *Electron Devices*, 44, 1997, 1208.
- 6. Srivastava R.S., Ind. J. Chem., 29, 1990, 1024-1026.
- 7. Waish C., Nature, 409, 2001, 226.
- He L.; Gou S. H.; Shi Q.F., J. Chem. Crystallogr., 29, 1999, 207.
- 9. Wu J.C.; Tang N.: Liu W.S.; Tan M.Y.; Chan A.S., *Chin Chem. Lett.*, 12, 2001, 757.
- Pandey V. K.; Sarah, T and Zehra T: *Indian J. Chem.* 43 B, 2004, 180
- 11. Joshi, L.D.; Kumar, R. and Parmar, S.S., *Curr.Sci.* 42,1973,847
- 12. Otto, H. and Houlohan, W.W.; Swiss Pat 1971, 499, 540, Chem Abstr. 75, 1771,20435

Determination of Stability Constant And Evaluation of Related Thermodynamic Parameters of Coordination Compounds of Transition Metals With Schiff's Base Ligands

- 13. Djebbar S. S.; Benali B.O.; Deloume J.P. Polyhedron, 16, 1997, 2175.
- 14. Irving, H. and Rossotti, H. J. J. Chem. Soc. 3397 (1953)
- Bhattacharrya P.; Parr J.; Ross A. T., Chem. Soc. Dalton, 1998, 3149.
- 16. Brown D. H., Smith W.E., Teape J.W. *et al.*, *J. Med. Chem.*, 23(7), 1980,729.
- Mukherjee, S. K. and Rawat N.S., J. Ind. Chem. Soc. 58,614,1981
- P. M. Mishra *et al*: Asian Journal of Chemistry vol. 21(7) p-5055-5060 (2009).
- 19. P. M. Mishra *et al*: Asian Journal of Chemistry vol. 21(9) p -7195-7199(2009).
- 20. P. M. Mishra *et al: Journal of Ultra Chemistry* vol. 5(2) p-131-136 (2009).
- 21. P. M. Mishra *et al: Journal of Ultra Chemistry* vol. 9(1) p-149 155 (2013).

- 22. P. M. Mishra et al: Rasayan Journal of Chemistry vol. 4(2) p-303-319 (2011).
- 23. T. Suresh et. al: J. Ind. Council of Chem. Vol. 24(1) pp-123 (2007)
- 24. T. Suresh et. al: J. Ind. Council of Chem. Vol. 25(2) pp-68-70 (2008)
- P. M. Mishra, Bimlesh Kumar Yadav: Ultra Scientist Vol. 27(3) B, p-139-154 (2015)
- P. M. Mishra: Journal of Applicable Chemistry vol. 5 No.-5, p. 1163-74 (2016)
- 27. P. M. Mishra: Oriental Journal of Chemistry vol. 32 No.-5, (2016)
- P. M. Mishra: *Journal of Ultra Chemistry* vol. 12 No.-2, p. 38-51 (2016)

How to cite this article:

Prem Mohan Mishra *et al* (2018) 'Determination of Stability Constant And Evaluation of Related Thermodynamic Parameters of Coordination Compounds of Transition Metals With Schiff's Base Ligands', *International Journal of Current Advanced Research*, 07(5), pp. 13098-13106. DOI: http://dx.doi.org/10.24327/ijcar.2018.13106.2323
