# FORECASTING SALES OF HONDA MOTOR VEHICLES THROUGH SAS SOFTWARE 

Hemasekhar P., Madhu Sudan G and Bupathi Naidu M<br>Department of Statistics, Sri Venkateshwara University, Tirupati-517502, AP, India

## ARTICLE INFO

## Article History:

Received $12^{\text {th }}$ January, 2018
Received in revised form $24^{\text {th }}$
February, 2018 Accepted $10^{\text {th }}$ March, 2018
Published online $28^{\text {th }}$ April, 2018

## Key words:

Time Series Analysis, Forecasting Methods, SAS, SPSS and MS Excel.


#### Abstract

In Business, Industry, Management and Administrative areas are need for planning is most important because the lead time for decision making ranges from several years in case of capital investments to a few days or hours for transportation or production schedules to a few seconds for telecommunication routing or electrical utility loading. So forecasting is an important aid in efficient planning. From decades two wheeler vehicles are much needed for every home and every person in their lives. In this paper we are going to forecast a sample sales of Honda motor vehicles in Renigunta, Chittoor (Dist) A.P.


> Copyright@2018 Hemasekhar P et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

## INTRODUCTION

Honda has been the world's largest motorcycle manufacturer since 1959, as well as the world's largest manufacturer of internal combustion engines measured by volume, producing more than 14 million internal combustion engines each year. Honda became the second-largest Japanese automobile manufacturer in 2001. Honda was the eighth largest automobile manufacturer in the world behind General Motors, Volkswagen Group, Toyota, Hyundai Motor Group, Ford, Nissan, and PSA Peugeot Citroën in 2011.

Honda was the first Japanese automobile manufacturer to release a dedicated luxury brand, Acura, in 1986. Aside from their core automobile and motorcycle businesses, Honda also manufactures garden equipment, marine engines, personal watercraft and power generators, and other products. Since 1986, Honda has been involved with artificial intelligence/robotics research and released their ASIMO robot in 2000. They have also ventured into aerospace with the establishment of GE Honda Aero Engines in 2004 and the Honda HA-420 HondaJet, which began production in 2012. Honda has three joint-ventures in China (Honda China, Dongfeng Honda, and Guangqi Honda).
In 2013, Honda invested about $5.7 \%$ (US\$6.8 billion) of its revenues in research and development. Also in 2013, Honda became the first Japanese automaker to be a net exporter to the United States, exporting 108,705 Honda and Acura models, while importing only 88,357 .

[^0]
## Source of Data

The data related to sales of Honda bikes collected from Honda showroom nearby Renigunta road Tirupati, Andhra Pradesh during 2011-2015

Variables studied: Sales-Year, Color, and Model wises

## Objectives

1. To compute summary statistics of sales related to Year wise, Color wise, Model wise.
2. To forecast sales Year wise, Color wise and Model wise.

## Statistical Techniques \& Software Used

For analyzing the data we make the use of Base SAS software

## Base SAS Software

It's the foundation for all SAS software. Along with an easy-to-learn, flexible programming interface; ready-to-use programs for manipulation, information storage and retrieval, descriptive statistics and reporting; a centralized metadata repository; and a macro facility that reduces programming time and maintenance headaches.
Benefits
Integrated data across environments: Based on an open, cross-platform architecture, Base SAS is hardware -agile environment infrastructure, enabling us to unify our computing efforts and get a single view of your data

Read, format and analyze any data: From small data issues to large complex data problems, programmers can read, format, analyze and report on data quickly, regardless of format.

Make programming fast and easy: An intuitive and easy-tolearn programming language and packaged programs called procedures significantly reduce the amount of code needed to deliver information.

Deliver reports to mobile devices: Base SAS provides maximum reporting flexibility. You can easily create reports in standard office formats such as RTFs, PDFs, Microsoft PowerPoint, HTML, and an e-books format that can be read with $\mathrm{iBooks}_{\circledR}$, on the $\mathrm{iPad}_{\mathbb{B}}$, and iPhones ${ }_{\circledR}$. Produce reports and visualizations of analytic results automatically from statistical procedures and deliver them on the platforms and applications people use most.

Maximizing Computing resources: Multithreaded, scalable and high- performance capabilities take advantage of parallel processing so we get the most from our computing resources and produce faster answers

Access industry- standard data security: SAS/SECURE is delivered as part of Base SAS and provides access to industry standard data encryption, including the Advanced Encryption Standard (AES). So we can encrypt SAS data on disks, and increase security for stored passwords.SAS UI on


## Windows OS

We can easily import or export the data from other sources like Excel (.xls), SPSS (.sav), dBASEfile (.dbf), Paradox file (.db), etc.

$$
\text { File } \rightarrow \text { Import data }
$$

It will shows an popup menu having the name import wizard, and proceed with instructions like source of data, path of the file etc.


## Combining SAS data sets

Use a Single SET statement with multiple data sets to concatenate the specified data sets. That is the number of observations in the new data set is the sum of the number of observations in the original data sets, and the order of the observations is allthe observations from the first data set followed by all the observations from the second data set and so on.
/* A sample base SAS program to combine multiple data sets at a time */

```
Data overall ;
Set 2011201220132014 2015;
Run;
```

The above code in SAS environment concatenates all data sets related to different years and later we can import it to Excel or SPSS for further Analysis.

## Statistical Analysis and presentation of results

To achieve our objective-1 we analyze data and interpret the results as follows.

For the given data we make analysis as

1. Year wise
2. Color wise
3. Model wise

| Year wise sales |  |
| :---: | :---: |
| YEAR | SALES |
| 2011 | 2898 |
| 2012 | 3365 |
| 2013 | 3177 |
| 2014 | 4135 |
| 2015 | 3178 |
| Summary statistics |  |
| Mean |  |
| Standard Error | 209.7933745 |
| Median | 3178 |
| Mode | \#N/A |
| Standard | 469.1122467 |
| Deviation |  |
| Sample | 220066.3 |
| Variance |  |
| Kurtosis | 2.900752613 |
| Skewness | 1.531865084 |
| Range | 1237 |
| Minimum | 2898 |
| Maximum | 4135 |
| Sum | 16753 |
| Count | 5 |



Color wise sales during 2011-2015

| Colour | Sales |
| :---: | :---: |
| Black | 4169 |
| Blue | 555 |
| Green | 104 |
| Grey | 3444 |
| Purple | 282 |
| Red | 2537 |
| Silver | 962 |
| White | 799 |
| Yellow | 117 |
| Orange | 38 |

Summary statistics

| Mean | $\mathbf{1 3 0 0 . 7}$ |
| :---: | :---: |
| Standard Error | 480.0139361 |
| Median | 677 |
| Mode | \#N/A |
| Standard Deviation | 1517.937347 |
| Sample Variance | 2304133.789 |
| Kurtosis | -0.263510234 |
| Skewness | 1.124235481 |
| Range | 4131 |
| Minimum | 38 |
| Maximum | 4169 |
| Sum | 13007 |
| Count | 10 |



## Model wise sales

| MODEL | SALES |
| :---: | :---: |
| Activa | 5040 |
| Shine | 6670 |
| Stunner | 321 |
| Unicorn | 2348 |
| Twister | 784 |
| Summary Statistics |  |
| Mean |  |
| Standard Error | $\mathbf{3 0 3 2 . 6}$ |
| Median | 237.55829 |
| Mode | \#N/A |
| Standard Deviation | 2744.90379 |
| Sample Variance | 7534496.8 |
| Kurtosis | -2.0297782 |
| Skewness | 0.49533845 |
| Range | 6349 |
| Minimum | 321 |
| Maximum | 6670 |
| Sum | 15163 |
| Count | 5 |



Year * Color (Cross table)
For this we set up null hypotheses as follows,
$\mathbf{H}_{\mathbf{0 1}}$ : The mean sales between different colors are equal and are not significant
$\mathbf{H}_{\mathbf{0 2}}$ : The mean sales between different years are equal and are not significant

| Year/ color | Black | Blue | Green | Grey | range | Purple | Red | Silve | Wh | ello |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2009 | 462 | 115 | 10 | 565 | 3 | 92 | 323 | 282 | 25 | 12 |
| 2010 | 618 | 159 | 42 | 747 | 10 | 71 | 549 | 203 | 69 | 50 |
| 2011 | 583 | 225 | 24 | 582 | 9 | 6 | 581 | 116 | 153 | 29 |
| 2012 | 1436 | 53 | 18 | 880 | 10 | 12 | 563 | 182 | 335 | 15 |
| 2013 | 1064 | 1 | 10 | 665 | 6 | 98 | 520 | 178 | 217 | 11 |

ANOVA: Two-Factor without Replication

| Source of <br> Variation | SS | df | MS | F | P-value | F crit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rows | 144360.08 | 4.00 | 36090.02 | 1.74 | 0.16 | 2.63 |
| Columns | 4137738.98 | 9.00 | 459748.78 | 22.20 | 0.00 | 2.15 |
| Error | 745667.52 | 36.00 | 20712.99 |  |  |  |
| Total | 5027766.58 | 49.00 |  |  |  |  |

Since F calculated value $<\mathrm{F}$ critical value, we accept null hypotheses and we say that The mean sales between different years are equal and are not significant.

## Year * Model (Cross table)

For this we set up null hypotheses as follows,
$\mathbf{H}_{\mathbf{0 1}}$ : The mean sales between different models are equal and are not significant
$\mathbf{H}_{\mathbf{0 2}}$ : The mean sales between different years are equal and are not significant

| Year/Model | Activa | Shine | Stunner | Twister | Unicorn |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2009 | 907 | 1355 | 104 | 0 | 414 |
| 2010 | 996 | 1241 | 125 | 342 | 382 |
| 2011 | 972 | 1310 | 51 | 276 | 333 |
| 2012 | 1322 | 1647 | 35 | 81 | 612 |
| 2013 | 843 | 1117 | 6 | 66 | 607 |

ANOVA: Two-Factor Without Replication

| Source of Variation | $\boldsymbol{S S}$ | $\boldsymbol{d f}$ | $\boldsymbol{M S}$ | $\boldsymbol{F}$ | $\boldsymbol{P}$-value | $\boldsymbol{F}$ crit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rows | 134228.56 | 4 | 33557.14 | 1.661 | 0.207 | 3.006 |
| Columns | 6044744.6 | 4 | 1511186.1 | 74.800 | 0.000 | 3.006 |
| Error | 323245.44 | 16 | 20202.84 |  |  |  |
| Total | 6502218.6 | 24 |  |  |  |  |

Since F calculated value $<$ F critical value, we accept null hypotheses and we say that the mean sales between different years are equal and are not significant.

To achieve objective -V, we perform the chi-test in Excel for the following cross tables obtained from SPSS

## Year * Color (Cross table)

We set up null hypothesis as $\mathrm{H}_{0}$ : There is no association in sales between years and colors
(or) The sales are independent with respect to years and colors

| Year/ Color | Black | Blue | Green | Grey | Orange | Purple | Red | Silver | White | Yellow | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2011 | 462 | 115 | 10 | 565 | 3 | 92 | 323 | 282 | 25 | 12 | 1889 |
| 2012 | 618 | 159 | 42 | 747 | 10 | 71 | 549 | 203 | 69 | 50 | 2518 |
| 2013 | 583 | 225 | 24 | 582 | 9 | 6 | 581 | 116 | 153 | 29 | 2308 |
| 2014 | 1436 | 53 | 18 | 880 | 10 | 12 | 563 | 182 | 335 | 15 | 3504 |
| 2015 | 1064 | 1 | 10 | 665 | 6 | 98 | 520 | 178 | 217 | 11 | 2770 |
| Total | 4163 | 553 | 104 | 3439 | 38 | 279 | 2536 | 961 | 799 | 117 | 12989 |

## Expected frequencies

| 605 | 80 | 15 | 500 | 6 | 41 | 369 | 140 | 116 | 17 | 1889 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 807 | 107 | 20 | 667 | 7 | 54 | 492 | 186 | 155 | 23 | 2518 |
| 740 | 98 | 18 | 611 | 7 | 50 | 451 | 171 | 142 | 21 | 2308 |
| 1123 | 149 | 28 | 928 | 10 | 75 | 684 | 259 | 216 | 32 | 3504 |
| 888 | 118 | 22 | 733 | 8 | 59 | 541 | 205 | 170 | 25 | 2770 |
| 4163 | 553 | 104 | 3439 | 38 | 279 | 2536 | 961 | 799 | 117 | 12989 |


| CHITEST | PVALUE | $4.2884 \mathrm{E}-268$ |
| :--- | :---: | :---: |
| CHIDIST | $\mathrm{P}(\mathrm{X}>\mathrm{x})$ | 1 |
| CHIINV | CHISQUARE | 5.5208 |

Since p -value is less than 0.05 , We reject $\mathrm{H}_{0}$ conclude that there is significant difference between Years and colors.

## Year * Model (Cross table)

We set up null hypothesis as $\mathrm{H}_{0}$ : There is no association in sales between years and model
(or) The sales are independent with respect to years and model

| Year/Model | Activa | Shine | Stunner | Twister | Unicorn | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2011 | 907 | 1355 | 104 | 0 | 414 | 2780 |
| 2012 | 996 | 1241 | 125 | 342 | 382 | 3086 |
| 2013 | 972 | 1310 | 51 | 276 | 333 | 2942 |
| 2014 | 1322 | 1647 | 35 | 81 | 612 | 3697 |
| 2015 | 843 | 1117 | 6 | 66 | 607 | 2639 |
| TOTAL | 5040 | 6670 | 321 | 765 | 2348 | 15144 |


| Expected Frequencies |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 925 | 1224 | 59 | 140 | 431 | 2780 |
|  | 1027 | 1359 | 65 | 156 | 478 | 3086 |
|  | 979 | 1296 | 62 | 149 | 456 | 2942 |
|  | 1230 | 1628 | 78 | 187 | 573 | 3697 |
|  | 878 | 1162 | 56 | 133 | 409 | 2639 |
|  | 5040 | 6670 | 321 | 765 | 2348 | 15144 |
| CHITEST |  | PVALUE |  | 5.456 E |  |  |
| CHIDIST |  | $\mathrm{P}(\mathrm{X}>\mathrm{x})$ |  | 1 |  |  |
| CHIINV |  | CHISQUARE |  | 0.5831 |  |  |

Since p-value is less than 0.05 , We reject $\mathrm{H}_{0}$ and conclude that there is significant difference between Years and models.

## CONCLUSIONS

## ANOVA two-way analysis

1. There is no significance difference between years with colors wise
2. There is no significance difference between year with model wise

## Chi-Square test

1. There is association in sales between years and colors
2. There is association in sales between years and models

## References

1. Thomopouls, N.T (1980): Applied Forecasting Methods. Engle Wood Cliffs, N.J, Prentice Hall.
2. Sullivan, William G. and Wayne Claycambe. W (1977): Fundamentals of Forecasting. Prentice Hall. Virginia.
3. Bovas, Abraham and Johannes Ledolter (1983): Statistical Methods for Forecasting, John Wiley \& Sons. New York.
4. Box, G.E.P and Jenkkins, G.M (1976): Time Series Analysis Forecasting and Control, Holden Day, San Francisco.
5. Anderson, T.W (1971): The Statistical Analysis of Time Series, John Wiley, New York.
6. Markidakis, S Steven C. Wheel Wright and Victor E. Mcgee (1983): Forecasting: Methods and Applications, $2^{\text {nd }}$ Edition, New York, John Wiley \& Sons.

## How to cite this article:

Hemasekhar P et al (2018) 'Forecasting Sales of Honda Motor Vehicles Through Sas Software', International Journal of Current Advanced Research, 07(4), pp. 12127-12130. DOI: http://dx.doi.org/10.24327/ijcar.2018.12130.2126


[^0]:    *Corresponding author: Hemasekhar $\mathbf{P}$
    Department of Statistics, Sri Venkateshwara University, Tirupati-517502, AP, India

