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INTRODUCTION 
 

Domination in graphs has been an extensively researched 
branch of graph theory. Graph theory is one of the most 
flourishing branches of modern mathematics and computer 
applications. The last 30 years have witnessed spectacular 
growth of graph theory due to its wide application to discrete 
optimization problems, combinatorial problems and classical 
algebraic problems. It has a very wide range of application to 
many fields like engineering, physical, social a
sciences, linguistics ect., the theory of domination has been the 
nucleus of research activity in graph theory in recent time.
 

Domination in graphs has applications to several fields. 
Domination [3] arises in facility location problem, where
number of facilities like hospitals, fire stations is fixed and one 
attempts to minimize the distance that a person needs to travel 
to get to the closest facility. A similar problem occurs when 
the maximum distance to a facility is fixed and one attem
minimize the number of facilities necessary so that ever one is 
serviced. Concepts from domination [1,2] also appear in 
problems involving finding sets of representatives in 
monitoring communication or electrical networking, and in 
land surveying like minimizing the number of places 
surveyor must stand in order to take high measure mints for an 
entire region. 
 

In graph theory, an independent set or stable set is a set of 
vertices in a graph, no two of which are adjacent. 
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Interval graphs have a wide variant of applications to varies branches of sc
technology. Among the varies applications of the theory of domination, independent 
neighborhood sets the most often discussed is a communication networks. This network 
consists of communication links between a fixed set of sides. Suppose communication 
network does not work due to link failure. Then the problem is, what is the fewest number 
of communication links such that at least one additional transmitter would be required in 
order that communication with all sides be possible. This leads to the introduction of the 
concepts of minimum independent neighborhood set and bondage number of a graph. In 
this paper we discuss the comparison of minimum independent neighborhood set and the 
bondage number of an interval graph G.       

 

Domination in graphs has been an extensively researched 
branch of graph theory. Graph theory is one of the most 
flourishing branches of modern mathematics and computer 

witnessed spectacular 
growth of graph theory due to its wide application to discrete 
optimization problems, combinatorial problems and classical 
algebraic problems. It has a very wide range of application to 
many fields like engineering, physical, social and biological 
sciences, linguistics ect., the theory of domination has been the 
nucleus of research activity in graph theory in recent time. 

Domination in graphs has applications to several fields. 
Domination [3] arises in facility location problem, where the 
number of facilities like hospitals, fire stations is fixed and one 
attempts to minimize the distance that a person needs to travel 
to get to the closest facility. A similar problem occurs when 
the maximum distance to a facility is fixed and one attempts to 
minimize the number of facilities necessary so that ever one is 
serviced. Concepts from domination [1,2] also appear in 
problems involving finding sets of representatives in 
monitoring communication or electrical networking, and in 

mizing the number of places a 
surveyor must stand in order to take high measure mints for an 

In graph theory, an independent set or stable set is a set of 
vertices in a graph, no two of which are adjacent.  

That is, it is a set S of vertices such that for every two 
equivalently, each edge in the graph has at most one end point 
in S. The size of an independent set is the number of vertices it 
contains independent set have also been called internally stable 
sets. 
 

A maximal independent set [9,10] is either an independent set 
such that adding any other vertex to the set forces the set to 
contain an edge or the set of all vertices of the graph.
 

Shortest path algorithms are used in many application of 
everyday life. Consider using computer navigation software to 
obtain directions to a place you have never driven to before. In 
most cases, there are many paths one could talk in order to 
arrive at that location. This software creates a graph with the 
vertices representing a physica
represent the road that connects two locations. If there is not a 
road between locations, then there is not an edge in the graph. 
Next, a weight is associated with each edge. In this example, 
the primary metric used for weigh
factors in this example are considered when assigning a 
weight, or cost, to an edge such as traffic and average speed of 
vehicles on a give road.  
 

The bondage number [4] b(G) of a nonempty graph G is the 
minimum cardinality among all sets of edges E for which 
�(� − �) > �(�). Thus, the bondage number of G is the 
smallest number of edges whose removal will render every 
minimum dominating set in G a “nondominating” set in the 
resultant spanning subgraph. Since the domination number
every spanning subgraph of a nonempty graph G is at least as 
great as �(�), the bondage number of a nonempty graph is 
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Interval graphs have a wide variant of applications to varies branches of science and 
varies applications of the theory of domination, independent 

neighborhood sets the most often discussed is a communication networks. This network 
consists of communication links between a fixed set of sides. Suppose communication 

to link failure. Then the problem is, what is the fewest number 
of communication links such that at least one additional transmitter would be required in 
order that communication with all sides be possible. This leads to the introduction of the 

minimum independent neighborhood set and bondage number of a graph. In 
this paper we discuss the comparison of minimum independent neighborhood set and the 

of vertices such that for every two 
equivalently, each edge in the graph has at most one end point 
in S. The size of an independent set is the number of vertices it 
contains independent set have also been called internally stable 

independent set [9,10] is either an independent set 
such that adding any other vertex to the set forces the set to 
contain an edge or the set of all vertices of the graph. 

Shortest path algorithms are used in many application of 
ing computer navigation software to 

obtain directions to a place you have never driven to before. In 
most cases, there are many paths one could talk in order to 
arrive at that location. This software creates a graph with the 
vertices representing a physical location and the edges which 
represent the road that connects two locations. If there is not a 
road between locations, then there is not an edge in the graph. 
Next, a weight is associated with each edge. In this example, 
the primary metric used for weight is distance. However, other 
factors in this example are considered when assigning a 
weight, or cost, to an edge such as traffic and average speed of 

The bondage number [4] b(G) of a nonempty graph G is the 
mong all sets of edges E for which 

Thus, the bondage number of G is the 
smallest number of edges whose removal will render every 
minimum dominating set in G a “nondominating” set in the 
resultant spanning subgraph. Since the domination number of 
every spanning subgraph of a nonempty graph G is at least as 

, the bondage number of a nonempty graph is 
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well defined. In what follows, we investigate the value of the 
bondage number in progressively more general setting. 
 

Preliminaries 
  

Let I = {I1,I2,I3,………In} be an interval family where each Ii is 
an interval on the real line and  Ii = [ai,bi] for i = 1,2,3,…..n. 
Here ai is called the left end point and bi is right end point of Ii. 
Without loss of generality we assume that all end points of the 
intervals in I are distinct numbers between 1 and 2n. Two 
intervals i and j are said to intersect each other if they have 
non-empty intersection. 
 

A graph G(V,E) is called an interval graph [7,8] if there is a 
one-to-one correspondence between V and I such that two 
vertices of G are joined by an edge in E if and only if there 
corresponding intervals in I intersect. That is if   i = [ai,bi] and 
j= [ai,bi], then i and j interest means either aj < bi or ai < bj  
 

 
 

Let G (V,E) be a graph. The neighborhood [5,6] of a vertex v 
in G is defined as the set of vertices adjacent with v (including 
v) and is denoted by nbd[v]. A subset S of V in G is called a 
neighborhood set of G if G = ⋃ < ���[�] > �ℎ���	 <�∈�

���[�] > is the vertex induced subgraph of G. The 
neighborhood number of G is defined as the minimum 
cardinality of a neighborhood set of G. A neighborhood set 
with minimum cardinality is called a minimum neighborhood 
set. In addition if the set S is independent then S is called an 
independent neighborhood set of G. 
 

 For each interval i, let nbd[i] denote the set of intervals that 
intersect i (including i). Let min(i) denote the smallest interval 
and max(i) the largest interval in nbd[i]. The interval in nbd[i] 
with largest (or smallest) numeric value is called largest (or 
smallest) interval. Define NI(i) = j, if bi < aj and there do not 
exist an interval k such that  bi < ak < aj. If there is no such j, 
then define NI(i) = null. 
 

We now define Next(i) = max({nbd[min(NI(i))]}\{nbd[i]}). 
We may assume that there is no interval i ∈ I that intersects all 
other intervals in I. For {i} itself becomes a minimum 
neighborhood set. 
 

First we augment I with two dummy intervals say, I0 and In+1, 
where I0 = [a0,b0], and In+1 = [an+1,bn+1]  such that  b0 

<	min�����{��} and an+1 > max�����{��}. 
 

Let I1 = I ∪	{I0,In+1}. As in I the intervals in I1 are also indexed 
by increasing order of their right endpoints, namely   b0 < b1 
<,…..<bn+1. 
 

We now construct a directed network D (N,L) associated with 
G. For its nodes we take those intervals in I1 which are not 
properly contained within other intervals. Because if there is 
an interval j which contains another interval i, then the 
minimum neighborhood set containing i can be changed to 
{MINS\i} ∪ {j}. 
 

The lines in L are partitioned into two disjoint sets L1 and L2 
which are defined below. For j∈ D, there is    a directed line 
(I0,j) between I0 and j that belongs to L1 if and only if there is 
no interval Ih such that b0 < ah < bh < aj. Similarly there is a 
directed line (j,In+1) between j and In+1 that belongs to L1 if and 

only if there is no interval Ih such that bj < ah < bh < an+1. This 
gives the scope to join the intervals I0 and In+1 to other intervals 
in I and it is obvious that all such joined directed lines, belong 
to L1. Next for i, j ∈ D, there is a directed line (i,j) between i 
and j that belongs to L2 if and only if j = Next(i). 
 

A sub set D of V is said to be a dominating set of G if every 
vertex in V\D is adjacent to a vertex in D. The domination 
number �(�) of G is the minimum cardinality of a dominating 
set. 
 

The bondage number b(G) of a non-empty graph G is the 
minimum cardinality among all set of edges E1 for which  
�(� − ��) > �(�). Thus, the bondage number of G is the 
smallest number of edges whose removal will render every 
minimum dominating set in G a non-dominating set in the 
resultant spanning subgraph. Since the domination number of 
every spanning subgraph of a non-empty graph G is at least as 
great as	�(�), the bondage number of a non-empty graph is 
well defined. 
 

This concept was interdoduced by Fink et.al[4] and they have 
studied this parameter for some standard, trees and general 
bounds are obtained. 
 

General Conditions 
 

First we will discuss the following general conditions to find 
the minimum neighborhood set or minimum shortest path of 
an interval graph corresponding to an interval family  
I={I1,I2,I3,………In} 
 

1. If i and k are any two intervals which are intersecting 
and j such that i < j < k then j intersects k. 

2. If the directed line (0,j)	∈ L1 where j is any interval of I, 
then the intervals between 0 and j belong to nbd[j]. 

3. If the directed line (j,n+1) ∈ L1, where j is any interval 
of I, then the intervals between j and n+1 belong to 
nbd[j]. 

4. If i is any intervals and k = min(NI(i)) then the intervals 
between i and k intersect i. 

 

 
5. If i is any interval I then i < min(NI(i)) 
6. If i, j are any two intervals in I such that j = Next(i), 

then i and j are non-adjacent. 
 

Theorem.1: Let I = {I1,I2,I3,………In} be an interval family 
and G be an interval graph corresponding to I. and if the 
directed line (i, j)	∈ L2, then the intervals between i and j 
belong to nbd[i] or nbd[j]. 
 

Proof: Suppose G be an interval graph corresponding to an I 
and the directed line (i, j)	∈ L2. Now our aim to show that the 
intervals between i and j belong to nbd[i] or nbd[j]. Let (i, j)	∈ 
L2. Then j = next(i). Let p be any interval between i and j then 
it will arise four cases. 
 

Case 1: Suppose p intersects i, in such case p	∈	nbd[i]. 
Case 2: Suppose p intersects min (NI(i)) and does not 

intersect i. Then p ∈	nbd[NI(i)]. Since p does not 
intersect i, p∉ nbd[i]. So nbd[min(NI(i))]\nbd[i] 
contains p. Since j is the maximum element in 
nbd[min((NI(i))] and  p ∈	nbd[min(NI(i))] it follows 
that p must intersect j. That is p	∈ nbd[j]. 
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Case 3: Assume that p does not intersect neither i nor 
min(NI(i)). Suppose i < p < min(NI(i)).Then i and 
min(NI(i)) intersect implies p and min(NI(i)) intersect. 
Suppose min(NI(i)) < p < Next(i). Again min(NI(i)) 
intersects Next(i) implies p and Next(i) intersect. 
Therefore p does not intersect neither i nor min(NI(i)) 
does not arise. 

Case 4: Suppose p intersects j. Then clearly p ∈	nbd[j]. Thus 
for all possibilities, then intervals between    i and j 
belong to nbd[i] or nbd[j]. 

 

Theorem 2: Let G be an interval graph corresponding to an 
interval family I = {I1,I2,I3,………In}. Let (i,j) be any directed 
line in D. Then the vertex induced sub graph G' on the vertex 
set {Ii,Ii+1,…Ij-1,Ij} is a subgraph of the induced graph <nbd[Ii] 
∪ nbd[Ij]>. 
 

Proof: Let G be an interval graph corresponding to I, and G' be 
the induced subgraph on the vertex set {Ii,……Ij}. We know 
that the general conditions 2, 3 and theorem1, it’s clear that the 
vertex set {Ii,……Ij}∈ nbd[Ii]	∪	nbd[Ij].    It suffices to show 
that the edge of the graph G' occur in < nbd[Ii]	∪	nbd[Ij] >. Let 
Ir and Is be any two arbitrary intervals between Ii and Ij. 
Without loss of generality assume that Ir and Is. Now (i, j)	∈ D 
implies that (i, j)	∈ L1 or   (i, j)	∈ L2. Suppose (i, j)	∈ L1. Then 
either i = 0 or j = n+1. Suppose i = 0. Then by the general 
condition 2 in intervals between I0 and Ij belong to nbd[Ij]. In 
particular Ir , Is	∈ nbd[Ij]. Therefore the edge (Ir , Is) ∈ < nbd[Ij] 
>. Similarly when j = n+1 it follows that Ir , Is	∈ nbd[Ii] and so 
the edge (Ir , Is) ∈ < nbd[Ii] >. 
 

Suppose that (i, j)	∈ L2. Then by theorem 1, the intervals 
between Ii and Ij belong to nbd[Ii]	∪ nbd[Ij].     That is Ir, Is ∈ 

nbd[Ii]	∪ nbd[Ij]. If possible, let both Ir, Is ∈ nbd[Ii]. Then the 
edge (Ir, Is )  ∈	 < nbd[Ii] >. Similarly if            Ir, Is ∈ nbd[Ij] 
then  (Ir, Is )  ∈	 < nbd[Ij] >. 
 

Hence assume that Ir  ∈ nbd[Ii] and Is∈ nbd[Ij]. Again it is clear 
that the edge (Ir, Is) ∈ < nbd[Ii]	∪ nbd[Ij] >. Thus for all 
possibilities, the edge (Ir, Is ) ∈ <  nbd[Ii]	∪ nbd[Ij] > since Ir, Is  
are arbitrary, if follows that                   G' ⊆ <  nbd[Ii]	∪ nbd[Ij] 
>. 
 

Therefore the theorem is proved. 
 

Theorem 3: Let G be an interval graph and P is a shortest 
directed path between the vertex 0 to n+1 in D(N,L) then 
vertices in P other than 0 to n+1 correspond to a minimum 
independent neighborhood set of an interval graph. 
 

Proof: Let P be a shortest directed path from vertex 0 to n+1 in 
D. Define S = {Ii: vertex i appears in P, � ≠ 0, � ≠ � + 1}. For 
each directed line (i,j) in P, by general condition 2,3 and 
theorm1, if follows that all intermediate intervals Ii+1,Ii+2,…..Ij_1 
between Ii and Ij belong to  nbd[Ii]	∪ nbd[Ij]. Hence all 
intermediate intervals between the intervals in S belong to 
⋃ < ���[����,��∈� ] 	∪ ���[��] >. Since the intervals in S 

correspond to the vertices in path P, the intervals in between I0 
and the first interval in S as well as the intervals in between the 
last interval in S and In+1 also belong to ⋃ < ���[��] >.��∈�  

Thus all the vertices in G are exhausted by the vertices in S. 
That is V(G) = ⋃ ���[��]��∈� . But by theorem 2.                            

< {Ii,……Ij} >⊆<  nbd[Ii]	∪ nbd[Ij] > where Ii,Ij ∈ S. 
Therefore ⋃ < {�� … . ����,��∈� }⊆ 

⋃ < ���[��] ⋃���[����,��∈� ] 	>. 

Since V(G) = ⋃ ���[��]��∈� , it follows that G = ⋃ <��∈�

���[��] >. 
 

Thus S is a neighborhood set of G. By general condition 6, the 
vertices in S are non-adjacent. There for S forms an 
independent neighborhood set of G. Since P is shortest, it 
follows that S is a minimum independent neighborhood set of 
G. 

 

Practical Problem 
 

 

 
 

Fig 1 Interval family I 
 

 
Fig 2 Interval graph G 

 

MINIMUM INDEPENDENT NEIGHBORHOOD SET: 
Nbd[1] = {1,2,3,4}   min(1) = 1 NI(1) = 5  
Nbd[2] = {1,2,3,4,5}   min(2) = 1 NI(2) = 6 
Nbd[3] = {1,2,3,4,5}   min(3) = 1 NI(3) = 6 
Nbd[4] = {1,2,3,4,5}   min(4) = 1 NI(4) = 6 
Nbd[5] = {2,3,4,5,6}   min(5) = 2 NI(5) = 7 
Nbd[6] = {5,6,7,8}   min(6) = 5 NI(6) = 9 
Nbd[7] = {6,7,8,9,10}   min(7) = 6 NI(7) = null 
Nbd[8] = {7,8,9,10}   min(8) = 7 NI(8) = null 
Nbd[9] = {7,8,9,10}   min(9) = 7 NI(9) = null 
Nbd[10] = {7,8,9,10}   min(10) = 7 NI(10) = null 
 

Next (i) = max ({nbd[min((NI(i))}\{nbd[i]}) 
Next (1) = max ({nbd[min((NI(1))}\{nbd[1]}) = 5   
Next (2) = max ({nbd[min((NI(2))}\{nbd[2]}) = 6 
Next (3) = max ({nbd[min((NI(3))}\{nbd[3]}) = 6 
Next (4) = max ({nbd[min((NI(4))}\{nbd[4]}) = 6 
Next (5) = max ({nbd[min((NI(5))}\{nbd[5]}) = 7 
Next (6) = max ({nbd[min((NI(6))}\{nbd[6]}) = 9 
Next (7) = max ({nbd[min((NI(7))}\{nbd[7]}) = null 
Next (8) = max ({nbd[min((NI(8))}\{nbd[8]}) = null 
Next (9) = max ({nbd[min((NI(9))}\{nbd[9]}) = null 
Next (10) = max ({nbd[min((NI(10))}\{nbd[10]}) = null 
Now the dummy intervals I0 and In+1 are augmented to I: 
 

 
 

Fig 3 Interval family I1 = I ∪	{I0,In+1} 
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Directed Network D(N,L) is constructed as follows 
N = {0,1,2,3,4,5,6,7,8,9,10,11} 
L = L1	∪ L2 
               

 
Fig 4 Networking 

 
In the D(N,L) of the above example, observe that the shortest 
path from node 0 to node 11 is (0,1,5,7,11) or (0,2,6,9,11) or 
(0,3,6,9,11). Deleting the dummy nodes 0 and 11 from the 
above shortest paths we get three minimum independent 
neighborhood set namely (1,5,7), (2,6,9), (3,6,9) of the interval 
graph . 
 

To Find A Bondage Number 
 

Theorem: Let G be an interval graph corresponding to an 
interval family I = {I1,I2,I3,………In}. Let D = {x,y). Suppose 
x dominates S1= {1,……..i} and y dominates S2 = 
{i+1,…..,n}. Suppose there are two vertices say            z1,z2 ∈ 
S1 or S2 such that z1, z2 also dominates S1 or S2 respectively, 
then the bondage number b(G) = 3. 
 

Proof: Let I = {I1,I2,I3,………In} be an interval family and G 
is an interval graph of G. Now we have to show that the 
bondage number b(G) = 3 from an interval graph G 
corresponding to an interval family I. Let D = {x,y} and x,y 
satisfy the hypotheses of the theorem. Suppose z1, z2 ∈ S1 and 
z1, z2 also dominates S1. Let k be an arbitrary vertex in S1, k ≠
	i,x, z1, z2. Now deleted the edges xk, z1k, z2k that are incident 
with k from G. If d(k) = 3, then k becomes an isolated vertex 
in G1 = G− {xk,z1k, z2k}. 
 

Thus D1 = D U {K} becomes a dominating set of G1 and since 
D is minimum it follows that D1 is minimum in G1. Hence 
�(��) > �(�) and hence the bondage number b(G) =3. 
 

Suppose the degree of vertex d(k)>3. Then there is at least one 
vertex, say j in S1 such that j is adjacent to k and j	≠x, z1, z2. 
Let G1 = G− {xk, z1k, z2k}. In G1, k is not dominated by x, z1, 
z2, but is dominated by j, for there every vertex in S1 other than 
k is dominated by x or z1 or z2 in G1. Therefore every vertex in 
S1 is dominated by {x,j} or {z1,j} or {z2,j} in G1. Thus D1 = D 
U {j} becomes a dominating set if G1 and since D is minimum 
in G it follows that D1 is also minimum in G1. Hence the 
bondage 	�(��) > �(�) so that b(G) = 3. Similarly we can 
show that if the vertices z1, z2 ∈ S2. 
 

In this connection our aim to show that the comparison of 
bondage number and a minimum independent neighborhood 
set of in an interval graph G. In fact we have already proved in 
theorem 1, theorem 2, theorem 3 of a minimum independent 
neighborhood set and theorem 4 the bondage number of G. As 
follows the practical problem of an interval family 
corresponding to an interval graphs G. 
 
 
 
 
 
 
 
 
 
 
 

Practical Problem 
 

We have already found the domination number from G. Next 
we will find the bondage number of G. 
 Dominating set D = {4,8} and �(�) = 2. 
Remove the edges (1,2), (1,3), (1,4) from G. 

 

 
Fig 5 G1 = G - {(1,2)(1,3)(1,4)} 

 

Dominating set of G1 = D1 ={1,4,8} and �(�) = 	3 
There fore �(� − �) > �(�). Bondage number b(G) = 3. 
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