

KEY-AGGREGATE CRYPTOSYSTEM

Samirana Acharya B.,

CSE Dept Gurunanak Institutions Technical Campus

A R T I C L E I N F O

INTRODUCTION

Cloud storage is gaining popularity recently. In enterprise
settings, we see the rise in demand for data outsourcing. It is
also used as a core technology behind many online services for
personal applications. Nowadays, it is easy to apply for free
accounts for email, photo album, file sharing and/or remote
access, with storage size more than 25GB. Together with the
current wireless technology, users can access almost all of
their files and emails by a mobile phone in any corner of the
world.

Data sharing is an important functionality in cloud storage. For
example, bloggers can let their friends view a subset of their
private pictures; an enterprise may grant her employees access
to a portion of sensitive data. The challenging problem is how
to effectively share encrypted data. Of course users can
download the encrypted data from the storage, decrypt them,
then send them to others for sharing, but it loses the value of
cloud storage. Users should be able to delegate the access
rights of the sharing data to others so that they can access these
data from the server directly. However, finding an efficient
and secure way to share partial data in cloud storage is not
trivial. Below we will take Dropbox1 as an example for
illustration.

Assume that Alice puts all her private photos on Dropbox, and
she does not want to expose her photos to everyone. Due to
various data leakage possibility Alice cannot feel relieved by
just relying on the privacy protection mechanisms provided by

International Journal of Current Advanced Research
ISSN: O: 2319-6475, ISSN: P: 2319-6505,
Available Online at www.journalijcar.org
Volume 7; Issue 3(K); March 2018; Page No.
DOI: http://dx.doi.org/10.24327/ijcar.2018

Copyright©2018 Samirana Acharya B et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

*Corresponding author: Samirana Acharya B
CSE Dept Gurunanak Institutions Technical Campus

Article History:

Received 24th December, 2017
Received in revised form 13th
January, 2018 Accepted 8th February, 2018
Published online 28th March, 2018

Key words:

Data Sharing, Cloud-storage, key-aggregate
encryption, Key-Aggregate Decryption.

AGGREGATE CRYPTOSYSTEM FOR SCALABLE DATA SHARING IN CLOUD STORAGE

B., Chelika Vishnuteja., A Sai Rithwik and Cheguri Harish

CSE Dept Gurunanak Institutions Technical Campus

 A B S T R A C T

Data sharing is an important functionality in cloud storage. In
securely, efficiently, and flexibly share data with others in cloud storage. Here we introduce
new public-key which is used to convert the readable data into unreadable format, such
process is called Encryption. The process of converting of the unreadable data to readable
format is called Decryption. The novelty is that one can aggregate any set of secret keys
and make them as compact as a single key, but encompassing the power of all the keys
being aggregated. Here we provide formal security analysis of our schemes in the standard
model and also describe other application of our schemes. In particular, our schemes give
the first public-key patient-controlled encryption for flexible hierarchy; t
using the Public-Key is used to protect the data from unauthorised persons.

gaining popularity recently. In enterprise
settings, we see the rise in demand for data outsourcing. It is
also used as a core technology behind many online services for
personal applications. Nowadays, it is easy to apply for free

o album, file sharing and/or remote
access, with storage size more than 25GB. Together with the
current wireless technology, users can access almost all of
their files and emails by a mobile phone in any corner of the

Data sharing is an important functionality in cloud storage. For
example, bloggers can let their friends view a subset of their
private pictures; an enterprise may grant her employees access
to a portion of sensitive data. The challenging problem is how

effectively share encrypted data. Of course users can
download the encrypted data from the storage, decrypt them,
then send them to others for sharing, but it loses the value of
cloud storage. Users should be able to delegate the access

ing data to others so that they can access these
data from the server directly. However, finding an efficient

data in cloud storage is not
as an example for

ce puts all her private photos on Dropbox, and
she does not want to expose her photos to everyone. Due to
various data leakage possibility Alice cannot feel relieved by
just relying on the privacy protection mechanisms provided by

Dropbox, so she encrypts all the photos using her own keys
before uploading. One day, Alice’s friend, Bob, asks her to
share the photos taken over all these years which Bob appeared
in. Alice can then use the share function of Dropbox, but the
problem now is how to delegate t
photos to Bob. A possible option Alice can choose is to
securely send Bob the secret
are two extreme ways for her under the traditional encryption
paradigm

 Alice encrypts all files with a sing
and gives Bob the corresponding secret key directly.

 Alice encrypts files with distinct keys and sends Bob
the corresponding secret keys.

Encryption keys also come with two flavours
or asymmetric (public) key. Using
when Alice wants the data to be originated from a third party,
she has to give the encryption her secret key; obviously, this is
not always desirable. By contrast, the encryption key and
decryption key are different in public
of public-key encryption gives more flexibility for our
applications. For example, in enterprise settings, every
employee can up-load encrypted data on the cloud storage
server without the knowledge of the company’s master
key.

Therefore, the best solution for the above problem is that Alice
encrypts files with distinct public
single (constant-size) decryption key. Since the decryption key
should be sent via a secure channel and kept secret, small key
size is always de-sirable. For example, we can not expect large
storage for decryption keys in the resource
like smart phones, smart cards or wireless sensor nodes.

International Journal of Current Advanced Research
6505, Impact Factor: 6.614

www.journalijcar.org
; Page No. 11192-11194

//dx.doi.org/10.24327/ijcar.2018.11194.1931

This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Samirana Acharya B
CSE Dept Gurunanak Institutions Technical Campus

DATA SHARING IN CLOUD STORAGE

Cheguri Harish

functionality in cloud storage. In this article, we show how to
share data with others in cloud storage. Here we introduce

key which is used to convert the readable data into unreadable format, such
called Encryption. The process of converting of the unreadable data to readable

format is called Decryption. The novelty is that one can aggregate any set of secret keys
and make them as compact as a single key, but encompassing the power of all the keys
being aggregated. Here we provide formal security analysis of our schemes in the standard
model and also describe other application of our schemes. In particular, our schemes give

controlled encryption for flexible hierarchy; the purpose of
Key is used to protect the data from unauthorised persons.

ypts all the photos using her own keys
before uploading. One day, Alice’s friend, Bob, asks her to
share the photos taken over all these years which Bob appeared
in. Alice can then use the share function of Dropbox, but the
problem now is how to delegate the decryption rights for these
photos to Bob. A possible option Alice can choose is to

 keys involved. Naturally, there
are two extreme ways for her under the traditional encryption

Alice encrypts all files with a single encryption key
and gives Bob the corresponding secret key directly.
Alice encrypts files with distinct keys and sends Bob
the corresponding secret keys.

ys also come with two flavours - sym-metric key
or asymmetric (public) key. Using symmetric encryption,
when Alice wants the data to be originated from a third party,
she has to give the encryption her secret key; obviously, this is
not always desirable. By contrast, the encryption key and
decryption key are different in public-key encryption. The use

key encryption gives more flexibility for our
applications. For example, in enterprise settings, every

load encrypted data on the cloud storage
server without the knowledge of the company’s master-secret

efore, the best solution for the above problem is that Alice
encrypts files with distinct public-keys, but only sends Bob a

size) decryption key. Since the decryption key
should be sent via a secure channel and kept secret, small key

sirable. For example, we can not expect large
storage for decryption keys in the resource-constraint devices
like smart phones, smart cards or wireless sensor nodes.

Research Article

This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Current Advanced Research Vol 7, Issue 3(K), pp 11192-11194, March 2018

11193

Especially, these secret keys are usually stored in the tamper-
proof memory, which is relatively expensive. The present
research efforts mainly focus on minimizing the
communication requirements (such as bandwidth, rounds of
communication) like aggregate signature [6]. However, not
much has been done about the key itself

Fig 1 Alice shares files with identifiers 2, 3, 6 and 8 with Bob by sending him
a single aggregate key.

We solve this problem by introducing a special type of public-
key encryption which we call key-aggregate cryptosystem
(KAC). In KAC, users encrypt a message not only under a
public-key, but also under an identifier of ciphertext called
class. That means the ciphertexts are further categorized into
different classes. The key owner holds a master-secret called
master-secret key, which can be used to extract secret keys for
different classes. More importantly, the extracted key have can
be an aggregate key which is as compact as a secret key for a
single class, but aggregates the power of many such keys, i.e.,
the decryption power for any subset of ciphertext classes. With
our solution, Alice can simply send Bob a single aggregate key
via a secure e-mail. Bob can download the encrypted photos
from Alice’s Dropbox space and then use this aggregate key to
decrypt these encrypted photos. The scenario is depicted in
Figure 1.The sizes of ciphertext, public-key, master-secret key
and aggregate key in our KAC schemes are all of constant size.
The public system parameter has size linear in the number of
ciphertext classes, but only a small part of it is needed each
time and it can be fetched on demand from large (but non-
confidential) cloud storage.Previous results may achieve a
similar property featuring a constant-size decryption key, but
the classes need to conform to some pre-defined hierarchical
relationship. Our work is flexible in the sense that this
constraint is eliminated, that is, no special relation is required
between the classes We propose several concrete KAC
schemes with dif-ferent security levels and extensions in this
article. All constructions can be proven secure in the standard
model. To the best of our knowledge, our aggregation
mechanism2 in KAC has not been investigated.

Existing System

Cryptographic key assignment schemes aim to minimize the
expense in storing and managing secret keys for general
cryptographic use. It proposed a method to generate a tree
hierarchy of symmetric keys by using repeated evaluations of
block-cipher on a fixed secret

Drawbacks in Existing System

 Increases the costs of storing and transmitting cipher
text.

 The costs and complexities involved generally
increase with increase with the number of the
decryption keys to be shared.

Proposed System

In this method we are introducing a special type of public-key
encryption which we call key-aggregate cryptosystem (KAC).
In KAC, users encrypt a message not only under a public-key,
but also under an identifier of ciphertext called class. That
means the ciphertexts are further categorized into different
classes. The key owner holds a master-secret called master-
secret key.

Advantages in Proposed System

 The delegation of decryption can be efficiently
implemented with the aggregate key, which is only of
fixed size.

 Number of ciphertext classes is large.
 It is easy to key management.

Key-aggregate encryption

We first give the framework and definition for key-aggregate
encryption. Then we describe how to use KAC in a scenario of
its application in cloud storage.

Framework

A key-aggregate encryption scheme consists of five
polynomial-time algorithms as follows.The data owner
establishes the public system param-eter via Setup and
generates a public/master-secret3 key pair via KeyGen.
Messages can be encrypted via Encrypt by anyone who also
decides what ciphertext class is associated with the plaintext
message to be encrypted. The data owner can use the master-
secret to generate an aggregate decryption key for a set of
ciphertext classes via Extract. The generated keys can be
passed to delegatees securely (via secure e-mails or secure
devices) Finally, any user with an aggregate key can decrypt
any ciphertext provided that the ciphertext’s class is contained
in the aggregate key via Decrypt.

 Setup (1λ, n): executed by the data owner to setup an
account on an untrusted server. On input a security level
parameter 1λ and the number of ciphertext classes n
(i.e., class index should be an integer bounded by 1 and
n), it outputs the public system parameter param, which
is omitted from the input of the other algorithms for
brevity.

 KeyGen: executed by the data owner to randomly
generate a public/master-secret key pair (pk, msk).

 Encrypt (pk, i, m): executed by anyone who wants to
encrypt data. On input a public-key pk, an index i
denoting the ciphertext class, and a message m, it
outputs a ciphertext C.

 Extract (msk, S): executed by the data owner for del-
egating the decrypting power for a certain set of ci-
phertext classes to a delegatee. On input the master-
secret key msk and a set S of indices corresponding to
different classes, it outputs the aggregate key for set S
denoted by KS.

Key-Aggregate Cryptosystem for Scalable Data Sharing in Cloud Storage

 11194

 Decrypt (KS, S, i, C): executed by a delegatee who
received an aggregate key KS generated by Extract. On
input KS , the set S, an index i denoting the

Algorithm for Encryption and Decryption

STEP1: SETUP: compute the keys to be encrypt
STEP2: KEYGEN: provide the function
STEP3: ENCRYPT for a message m ∈ GT and an index
STEP4: Extract (msk = γ, S): for the set of s of index j the
aggregate key
STEP5: DECRYT: (KS, S, , C = _c1, c2, c3_) otherwise
return a message

Performance analysis

Compression Factors

For a concrete comparison, we investigate the space
requirements of the tree-based key assignment approach we
described in Section 3.1. This is used in the Complete Subtree
scheme, which is a representative solution to the broadcast
encryption problem following the well-known Subset-Cover
framework.

 /

Fig 2 Compression achieved by the tree-based approach for delegating
different ratio of the classes.

CONCLUSION

Data privacy is a central question of cloud storage. With more
mathematical tools, cryptographic schemes are getting more
versatile and often involve multiple keys for a single
application. In this article, we consider how to “compress”
secret keys in public-key cryptosystems which support
delegation of secret keys for different ciphertext classes in
cloud storage. No matter which one among the power set of
classes, the delegatee can always get an aggregate key of
constant size. Our approach is more flexible than hierarchical
key assignment which can only save spaces if all key-holders
share a similar set of privileges.

Future Work

A limitation in our work is the predefined bound of the number
of maximum ciphertext classes. In cloud storage, the number
of cipher texts usually grows rapidly. So we have to reserve
enough ciphertext classes for the future extension

References

1. S. S. M. Chow, Y. J. He, L. C. K. Hui, and S.-M. Yiu,
“SPICE - Simple Privacy-Preserving Identity-
Management for Cloud Envi-ronment,” in Applied
Cryptography and Network Security - ACNS 2012, ser.
LNCS, vol. 7341. Springer, 2012, pp. 526-543.

2. L. Hardesty, “Secure computers aren’t so secure,” MIT
press, 2009,
http://www.physorg.com/news176107396.html.

3. C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and W.
Lou, “Privacy-Preserving Public Auditing for Secure
Cloud Storage,” IEEE Trans. Computers, vol. 62, no. 2,
pp. 362-375, 2013.

4. B. Wang, S. S. M. Chow, M. Li, and H. Li, “Storing
Shared Data on the Cloud via Security-Mediator,” in
International Conference on Distributed Computing
Systems - ICDCS 2013. IEEE, 2013.

5. S. S. M. Chow, C.-K. Chu, X. Huang, J. Zhou, and R.
H. Deng, “Dynamic Secure Cloud Storage with
Provenance,” in Cryptog-raphy and Security: From
Theory to Applications - Essays Dedicated to Jean-
Jacques Quisquater on the Occasion of His 65th
Birthday, ser. LNCS, vol. 6805. Springer, 2012, pp.
442-464.

6. D. Boneh0, C. Gentry, B. Lynn, and H. Shacham,
“Aggregate and Verifiably Encrypted Signatures from
Bilinear Maps,” in Proceedings of Advances in
Cryptology - EUROCRYPT ’03, ser. LNCS, vol. 2656.
Springer, 2003, pp. 416-432.

7. M. J. Atallah, M. Blanton, N. Fazio, and K. B. Frikken,
“Dynamic and Efficient Key Management for Access
Hierarchies,” ACM Transactions on Information and
System Security (TISSEC), vol. 12, no. 3, 2009.

8. J. Benaloh, M. Chase, E. Horvitz, and K. Lauter,
“Patient Controlled Encryption: Ensuring Privacy of
Electronic Medical Records,” in Proceedings of ACM
Workshop on Cloud Computing Security (CCSW ’09).
ACM, 2009, pp. 103-114.

9. F. Guo, Y. Mu, Z. Chen, and L. Xu, “Multi-Identity
Single-Key Decryption without Random Oracles,” in
Proceedings of Informa-tion Security and Cryptology
(Inscrypt ’07), ser. LNCS, vol. 4990. Springer, 2007,
pp. 384-398.

10. V. Goyal, O. Pandey, A. Sahai, and B. Waters,
“Attribute-Based Encryption for Fine-Grained Access
Control of Encrypted data,” in Proceedings of the 13th
ACM Conference on Computer and Com-munications
Security (CCS ’06). ACM, 2006, pp. 89-98.

How to cite this article:

Samirana Acharya B et al (2018) 'Key-Aggregate Cryptosystem for Scalable Data Sharing in Cloud Storage', International
Journal of Current Advanced Research, 07(3), pp. 11192-11194. DOI: http://dx.doi.org/10.24327/ijcar.2018.11194.1931

