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A R T I C L E  I N F O                              A B S T R A C T  
 

 

The accelerated Degradation testing (ADT) experiments are important technical methods in 
reliability studies. Different type of accelerating degradation models have developed with 
the time and can be used in different types of situations. However, it has become necessary 
for the manager to test how many no of units should be tested at a particular stress level so 
that the cost of testing is less. Such experiments allow the experimenter to run the test units 
at higher-than-usual stress conditions in order to secure failures more quickly.The Inverse 
Gaussian process is flexible in incorporating random effects and explanatory variables.  
The different types of models based on IG process are random drift model, random 
volatility model and random drift- volatility model. In this paper we have considered 
random drift model for the study onstochastic degradation models for simple step-stress 
model using inverse Gaussian process observed in degradation problems. 
 
 
 
 
 
 

INTRODUCTION 
 

Accelerated Degradation testing (ADT) are preferred to be used in mechanized industries to obtain the required information about 
the reliability of product components and materials in a short period of time. Accelerated test conditions involve higher than usual 
pressure, temperature, voltage, vibration, etc or any other combination of them. Data collected at such accelerated conditions are 
extrapolated through a physically suitable statistical model to estimate the lifetime distribution at design condition stress the life 
data collected from the high stresses the need to be extrapolated to estimate the life distribution under the normal-use condition. A 
special class of the ADTis the step-stress testing which regularly increases the stress levels at some pre-fixed time points until the 
test unit fails. 
 

The main purpose of performing such test is to gather reliability information quickly or to save time as well as money. The 
degradation process is most often hastened under several stresses therefore we can use accelerated degradation test (ADT) to 
quickly obtain degradation phenomenon. In a simple constant stress ADT experiment no of units are allocated to several stress 
level and the degradation level of these units are measured, analyzed, and extrapolated to the failure threshold so as to estimate the 
life characteristics of interest under use conditions. ADTs are able to greatly abridge the testing duration, and have attracted much 
attention. These are two classes of models for ADT data. 
 

The first passage time of Brownian motion is distributed as inverse Gaussian, it is logical to use it as a life time model. It is useful 
in studying the life testing and reliability of a product, device or subcomponent. To predict the reliability of recently developed 
product engineers adopt accelerated tests in order to abridge the life of the product or accelerate the degradation of their 
performance. During this test the products are exposed to extreme conditions such as combination of random vibrations, increases 
temperature, voltage or pressure. Inverse Gaussian process is useful as a repair time model. Moreover the field of reliability, the 
inverse Gaussian distribution has been used in a wide range of applications which includes many various fields such as 
cardiology, hydrology, demography, linguistic and finance has discussed byChikkara and Folks (1989). 
 

REVIEW OF LITERATURE 
 

Refer to early work on degradation models can be establish in Nelson (1990), While more recent work is referenced by 
Bagdonavicius and Nikuline (2002). In particular, degradation models based on Gaussion or other Stochastic process have been 
considered recently by Doksum and Normand (1995), Lu (1995), Whitmore (1995), Whitmore and Schenkelberk (1997),  
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Whitemore, Crower and Lawless (1998),   Bagdonavicius and Nikuline (2000). Also assuming degradation modelled by a 
Gaussian process with positive drift, Pettit and Young (1999) Developed by Bayesian Inference procedures for data which 
included both the lifetimes of items measured only at the ending of the test period. Including Lu and Meeker (1998), Boulanger 
and Escobar (1994), Hemada (1995), Meeker, Escobarand Lu (1998), and Meeker and Escobar (1998). Specific applications of 
degradation models have been reporting also by several investicators is See Carey and Koeing, (1991), Yanagisawa (1997), 
Meeker, Escobar (1998), 
 

Inverse Gaussian Process Model 
 

An inverse Gaussian process {Y(t); 	t	 ≥ 0	} with mean function	Ʌ(t) and scale parameter λ has the following properties:  
 
Y(t) has independent increments for every pair of disjoint intervals (푡 	, 푡 ), (푡 	, 푡 )	with 푡 < 푡 < 푡 < 푡 , the random variables 
푌(푡 )− 푌(푡 ) and 푌(푡 )− 푌(푡 )are  independent  
 
Each increment Y(t)− Y(s) has an inverse Gaussian distribution IG(ΔɅ(t), λ	ΔɅ(t) )	where ΔɅ = Ʌ(t) −Ʌ(s) and the PDF of 
an inverse Gaussian distribution random variable IG(μ, λ) with mean μ and variance μ

λ
has discussed by  Chikkara and Folks(1989) 

is  
 

푓(푥; 휇,휆	) =
휆	
2휋 푥

	푒푥푝 −
휆	(푥 − 휇)

2휇 푥 		푋 > 0																																																																																																																																			⋯ (1) 

 

푌(0) = 0With probability one. When the amount of degradation reaches a pre-specified critical level D, failure occurs. Let 
푇 = 퐼푛푓{푡:푌(푡) = 퐷} denote the failure time. Since the inverse Gaussian process has a failure time distribution by  
 

푃(푇 < 푡) = 	푃(푌(푡) > 퐷) = 	1− 퐺(퐷; 	Ʌ(푡), 휆	Ʌ(푡) )	 

														= Ф
휆
퐷 (Ʌ(푡)− 퐷) − 푒 Ʌ( )Ф

휆
퐷 (Ʌ(푡) +퐷) [−√휆퐷(Ʌ(푡) +퐷)] 																																																																												⋯ (2) 

 

Where 퐺	(. ; 	Ʌ,휆)is a cumulative distribution function (CDF) of 퐼퐺(Ʌ,휆) and 	Фis the standard normal cdf. From above equation 
we can write the CDF of the failure time distribution as  
 

퐻 (푡) = 	Ф
휆
퐷

(푡 − 퐷) − 푒 Ф
휆
퐷

(푡 +퐷) 																																																																																																																																	⋯ (3)	 

 

It is an increasing function. Thus, within this class of models, there is a one to one relationship between	Ʌ(푡) and the cdf of the 
failure time distribution 퐻 (푡) for a fixed scale parameter 휆.	 
 

	ʄ(푥; 휇,휆) =
휆
2л푥 푒푥푝	 −

휆(푥 − 휇)
2휇 푥 																																																																																																																																																				⋯ (4)		 

Where	휇 > 0	푎푛푑	휆 > 0 the parameter 휇 is the mean of the distribution and	휆	is a scale parameter. (Tweedie) gives three form of 
above pdf, which he obtained by replace the set of parameters (휇, 휆)	푏푦	(∝,휆)	표푟	(휇,휙),표푟	(휙,휆)	using the relationship given by 
 

휇 =
휆
휙 = (2 ∝) 																																																																																																																																																																																														⋯ (5)	 

 

Both	휇 and 휆 are of the same physical extent as the random variable 푋	itself; but the parameter 휇 =  is invariant under a scale 
transformation of 푋	as can be seen from the following relationship: ` 
 

푓(푥; 	휇,휆) = 휇 푓
푥
휇 ; 1,휙 = 휆 푓

푥
휇 ;휙, 1 																																																																																																																																												⋯ (6) 

 

The probability density can be numerically computed using any of the three forms in above equation as shown above the 
cumulative distribution function depends fundamentally on only two variables, which might be taken as 푥휇 and 휙. According, the 
case 휇 = 1 for the	(휇,휙)	parametric form of above equation could be adopted as a standard form. This has also been obtained as a 
limiting form of the distribution of the sample size in a Wald’s sequential probability ratio test and is sometimes referred to as the 
standard Wald’s distribution of thedensity function model is, 
 

휇	 1 +
9

4휙 −
3

2휙 																																																																																																																																																																																									⋯ (7)	 
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Inverse Gaussian Process with Random Effects  
 

Random effects are needed in Inverse Gaussian process to account for inexplicable heterogeneous degradation rates within the 
product population. By linking to the Weiner process this investigates different options to incorporate the random effects in the IG 
process model. Consider the wiener process W(x) 	= μ	x	+ λ	B(x) where μ > 0 is the drift parameter and λ > 0 is the volatility 
parameter and B(x) is the standard Brownian motion. Given a fix threshold Ʌ > 0, it is well known that the first passage time 

T 	= inf{x > 0│W(x) ≥ Ʌ} follows	IG Ʌ
μ

, Ʌ
λ

going one step further, we consider a series of the thresholds Ʌ(t)	indexed by	t 
with Ʌ(0) = 0 and Ʌ(t) increasing in t, and define the first passage time process Y(t) = 	TɅ( ) It is easily verified that the 
induced	{Y(t); t > 0} is an IG process with the mean function Ʌ( )

μ
 and variance function Ʌ( )

λ
 by asset of the stationary and 

independent increment property of the Wiener process W(x).	 
The inverse relation between the IG and the Wiener processes motivates investigation of the IG process from a new perspective. 
Existing results on the Wiener processes can let somebody use support to the development of IG process model with the random 
effects. The random effect model is described below 
 

Random Volatility Model  
Consider a Wiener process W(x) 	= 	μ x + λ B(x) with the induced IG process other way of introducing unit-specific random 
effects is to assume that each unit possess a separate realization of the volatility parameter. Accordingly volatility parameter in the 
Inverse Gaussian process is random. With the random volatility parameter in the Inverse Gaussian process all units have the same 
mean degradation path, even though they will have different variance functions. The Inverse Gaussian process with random 
volatility parameter was originally proposed by Wang and Xu (2010)  
Shortcoming of random volatility model is unusual to use the volatility parameter to control heterogeneity in the Weiner process 
thus application of random volatility model is limited. Thus random drift model was proposed which overcome inadequacy of 
random volatility model. 
 
Random Drift Model 
 
An effective way to incorporate random effect in the IG process is to let 휇 be a random variable. To avoid the negative values of 
휇	(Whitmore 1986) and ensure mathematical tractability, we assume 휇 − 1	follows a truncated normal distribution 
푇푁	(휔,푘 ),푘 > 0	with PDF  
 

푔(μ ; 	휔,푘 ) =
푘.휙[푘(	휇 − 1−휔)]

1−Ф(−푘휔) 휇 > 0																																																																																																																																														⋯ (8) 

 
Where (. )	is a standard normal PDF. In a degradation test, if the degradation of the ith testing unit is observed at time 푡 < 푡 <
⋯ . < 푡 with observations 푌 푡 , 푗 = 0,1,2, … . , 푛  the joint PDF of 푌 = [푌 (푡 ),푌 (푡 ), … .푌 (푡 	 )	] is computed by first 
conditioning on the random drift parameter 휇푖 and then marginalizing it, which yields the following equation  
 

푓 (푌 ) =
1− 휙 −휔 푘
1− 휙(−푘휔)

푘
푘
		훱

휆훬
2л푦푖푗

푘 휔 − 푘 휔
2 − 휆

훬푖푗
2푦푖푗 																																																																																																⋯

(9) 

 
Where 푌 = 푌 푡 − 푌 푡 − 1  is the observed increment 훬 = Ʌ 푡 − Ʌ 푡 − 1  
 

푘̃ = 휆푌 푡 푘 + 푘 																																																																																																																																																																															⋯ (10) 
 

휔̃ =
휆훬 푡 푘 + 푘 푒푥푝 ∝ +∝ 푥

푘̃
																																																																																																																																																											⋯ (11) 

 

휔̃ =
휆훬 푡 푘 + 푘 푒푥푝 ∝ +∝ 푥

휆푌 푡 푘 + 푘
																																																																																																																																																				⋯ (12) 

 

Then the log-likelihood function is given by  
 

푙(휃) = 푙푛
푘
푘

+
푘 휔 − 푘 푒푥푝 2 ∝ + 2 ∝ 푥

2 +
1
2 퐼푛 휆휕훬 −

휆훬
푦 																																																																										⋯ (13) 
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푙(휃) =

⎣
⎢
⎢
⎢
⎢
⎡

푙푛
푘

휆푌 푡 푘 + 푘
+

휆훬 푡 푘 + 푘 푒푥푝 ∝ +∝ 푥 − 푘 푒푥푝 2 ∝ + 2 ∝ 푥
휆푌 푡 푘 + 푘

2
+

1
2

퐼푛 휆휕훬 −
휆훬
푦

⎦
⎥
⎥
⎥
⎥
⎤

																																																														⋯ (14) 

 

The log likelihood function up to a constant can be expressed by the above equation. Where 휃 is a parameter vector 
include∝ 	,∝ 	,휆,훽, 푎푛푑	푘	. 
 

Accelerated Degradation Test Assumptions 
 

Let total N number of units is put into test. Suppose 푆  be the usage stress 푆 being the maximum acceptable stress. To collect the 
degradation data timely we allocate these units J stress level 푆 < 47 
 

푆 < ⋯… … … < 푆  with 푆 < 푆 and 푆 = 푆  consider 푁  units to be allocated to jth stress level.	푗 = 1, 2, 3, … . . 퐽. The 
degradation of these units is effected by the stress. Here, we have assumed 휇 = 	ℎ(푠), and 휆	is constant over	푠, where ℎ(푠) is a 
link function reflecting the effect of the stress on the degradation process. Due to the above assumption the degradation speed and 
drift changes with the stress. Another alternative is that휆 = ℎ(푠)	while 휇 is constant which is not valid for random drift model 
since	휇is changing from unit to unit. For simplicity and without loss of generality, the additional assumptions is, The measurement 
time interval, and the number of measurement 퐾 under the jth stress level, where 푗	 = 1,2, … … … 퐽, are pre-determined and The 
link function follows one of the following acceleration relations:  
 

Power law relationsℎ(푠) 	= 	 휑 	 . 	푠∝ 
Arrhenius relation ℎ(푠) = 	 휑 	. 푒

∝
 

Exponential relation ℎ(푠) = 	 휑 	 . 푒∝  
 

In real time applications the time approved for the test is often given by manager and time intervals at which the units are 
measured are predetermined because of the working time of experimenters. Thus, we assume that 휏  and 푘  are given. In our 
model we delight these two variables as decision variables, and then we optimally determine their values. When the assumed 
stress-degradation relation i.e., is correct we can use a two-stress ADT, i.e.,	퐽 = 2 in our model. But, in this minimum variance 
plan we are unable to check the validity of the assumed stress-degradation relationship.  
 

Thus we prefer to use three-stress ADT planning taking 퐽 = 3 to check the validity of the assumed model. In our settings, the 
purpose of ADT planning is to optimally determine the stress levels (푆 ), and the number of samples for each stress level (푁 ) are 
be investigated in our proposed work.  
 

Normalizing the Stress Level 
 

We standardize the stress levels depending on the acceleration relationship of the stress on the rate of degradation as follows:  
푍 =

	 	

	 	
For the power law relation  

푍 =
	 	

	 	
For the Arrhenius relation  

푍 =
	 	

	 	
For the exponential relation  

From the above consistency, it is readily seen that 푥 	= 0, 푥 = 1, and 0	 < 푍 ≤ 1 for 푗 = 1,2 … . , 퐽. then  
ℎ(푥) = 푒푥푝	(∝ +∝ 푍 )	 

ℎ(푥) = 푒푥푝 푙푛	휑 	 −
∝
푆 +∝

1
푆 −

1
푠  

ℎ(푥) = 푒푥푝 푙푛	휑 	 −
∝
푠  

ℎ(푥) = 	 휑 	 . 	푒
∝

 
ln 	ℎ(푥) = ln휑 	 −

∝
푠  

 

휔 = 	푒푥푝	(∝ +∝ 푍 )																																																																																																																																																																																			⋯ (15) 
Where  
∝ = ln	 휑 	 −

∝ 	 ,∝ =∝ ( − ) For the Arrhenius function  
∝ = ln	 휑 	 +∝ 푙푛	푆 	,∝ =∝ (ln 	푆 − 푙푛	푆 ) For the power law function  
∝ = ln	 휑 	 +∝ 푆 	,∝ =∝ (푆 − 푆 ) For the exponential function  
 

Inferential Procedure 
 

We suppose that the ith unit under the jth stress level is measured at time t 	= kτ  with observations 
Y 	(t ), k = 0,1, … … . . , k 	. Let	Y = Y 	(t )− Y 	(t , k − 1) be the observed increments, and Ʌ = Ʌ(t )− Ʌ(t , k −
1).	Now, the log-likelihood function up to a constant can be expressed by the equation above 1. The Fisher information matrix 
I(θ)	for the element ∝ ,∝ , k,ω,Ʌ(. ) can be developed as below. We assume nonlinear function for Ʌ(. ),	i.e., Ʌ(t) = 	 tβ and then 
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θ = (k, δ,∝ ,∝ ,β)’	detailed expression for the elements along with the elements of the fisher information matrix can be 
developed as follows 
 

휕푙(휃)
휕δ = 0 +

1
2

2 휆훬 푡 푘 + 푘 δ 푘
휆푌 푡 푘 + 푘

− 2푘휔 +
1
2

(0− 0)  

 

휕푙(휃)
휕δ =

1
2

2 휆훬 푡 푘 + 푘 δ 푘
휆푌 푡 푘 + 푘

− 2푘δ  

 

휕푙(휃)
휕δ

푘 휆훬 푡 푘 + 푘 δ
휆푌 푡 푘 + 푘

2푘 δ 																																																																																																																																								⋯ (16) 

 

휕 푙(휃)
휕δ =

−푘 (0 + 푘 )
휆푌 푡 푘 + 푘

− 푘  

 

휕 푙(휃)
휕δ =

푘 − 푘 − 푘 휆푌 푡 푘

휆푌 푡 푘 + 푘
− 푘  

 

휕 푙(휃)
휕δ =

−푘 휆푌 푡 푘

휆푌 푡 푘 + 푘
− 푘 																																																																																																																																													⋯ (17) 

 

 

휕푙(휃)
휕푘	 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

⎝

⎜
⎜
⎜
⎛

1
푘

휆푌 푡 푘 + 푘

휆푌 푡 푘 + 푘 − 푘 2푘

2 휆푌 푡 푘 + 푘

휆푌 푡 푘 + 푘

⎠

⎟
⎟
⎟
⎞

+
1
2

2 휆푌 푡 푘 + 푘 휆훬 푡 푘 + 푘 δ 푘δ− 휆훬 푡 푘 + 푘 δ (0 + 2푘)

휆푌 푡 푘 + 푘
− 2푘δ + 0

⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

 

휕푙(휃)
휕푘	 =

휆푌 푡 푘
휆푌 푡 푘 + 푘

+
휆훬 푡 푘 + 푘 δ 2푘δ휆푌 푡 푘 + 2푘 δ − 푘휆훬 푡 푘 − 푘 δ

푌 푡 푘 + 푘
− 푘δ 																								⋯ (18) 

 

휕 푙(휃)
휕푘 =

−2휆푌 푡 푘

휆푌 푡 푘 + 푘
+

휆훬 푡 푘 + 푘 2δ 휆 훬 푡 푘 푌 푡 푘 + 6푘 δ 휆푌 푡 푘 + 6푘 δ 휆훬 푡 푘 − 3푘 δ

푌 푡 푘 + 푘

+
3푘 + 4푘휆푌 휆훬 푡 푘 + 푘 δ 2푘δ 휆 	푌 푡 푘 + 2푘 δ − 푘휆훬 푡 푘 − 푘 δ

푌 푡 푘 + 푘
− δ 																																										⋯ (19) 
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휕푙(휃)
휕휆

⎣
⎢
⎢
⎢
⎢
⎡

1
푘

휆푌 푡 푘 + 푘

−
푘
2 휆푌 푡 푘 + 푘 .푌 푡 푘

+
1
2

휆훬 푡 푘 + 푘 휆훬 푡 푘 + 푘 δ 훬 푡 푘 − 휆훬 푡 푘 + 푘 δ 푌 푡 푘

푌 푡 푘 + 푘

+
1
2

1
휆훬 훬 −

훬
푌

⎦
⎥
⎥
⎥
⎤ 휕푙(휃)
휕휆

=
−1
2

휆푌 푡 푘
휆푌 푡 푘 + 푘

+
1
2

휆훬 푡 푘 + 푘 δ 휆푌 푡 푘 + 푘 2훬 푡 푘 − 푌 푡 푘 휆훬 푡 푘 + 푘 δ

휆푌 푡 푘 + 푘
	2

+
1
2

1
휆 −

훬
푌 																																																																																																																																																			⋯ (20) 

 

휕 푙(휃)
휕휆 =

1
2
푌 푡 푘 .푌 푡 푘

휆푌 푡 푘 + 푘
+

1
2

2훬 푡 푘 + 휆푌 푡 푘 + 푘 − 훬 푡 푘 − 휆훬 푡 푘 + 푘 δ 푌 푡 푘

휆푌 푡 푘 + 푘

−
휆푌 푡 푘 + 푘 푌 푡 푘 훬 푡 푘 − 휆훬 푡 푘 + 푘 δ 2휆푌 푡 푘 + 2휆푌 푡 푘 푘

휆푌 푡 푘 + 푘

+
1
2

−1
휆 − 0  

 

휕 푙(휃)
휕휆 =

푌 푡 푘

2 휆푌 푡 푘 + 푘
+

1
2

2훬 푡 푘 휆푌 푡 푘 + 푘 − 푌 푡 푘 휆훬 푡 푘 + 푘 δ

휆푌 푡 푘 + 푘

−
푌 푡 푘 훬 푡 푘 휆푌 푡 푘 + 푘 − 2 휆훬 푡 푘 + 푘 휔 휆푌 푡 푘 + 푌 푡 푘 + 푘

휆푌 푡 푘 + 푘

+
1
2 −

1
휆 																																																																																																																																																					⋯ (21) 

 

휕푙(휃)
휕훽	 = 0 +

1
2

2 휆훬 푡 푘 + 푘 δ
휆푌 푡 푘 + 푘

휆
휕훬
휕훽 − 0 +

1
2

1
휆훬

2휆훬
휕훬
휕훽 −

2휆훬
푌

휕훬
휕훽  

 
 

휕푙(휃)
휕훽	 =

휆훬 + 푘 δ
휆푌 푡 푘 + 푘

휕훬
휕훽 +

1
2

2
훬

휕훬
휕훽 −

2휆훬
푌

휕훬
휕훽  

 

 

휕푙(휃)
휕훽	 =

휕훬
휕훽

휆 휆훬 + 푘 δ
휆푌 푡 푘 + 푘

+
1
훬 −

2휆훬
푌

휕훬
휕훽 																																																																																⋯ (22) 
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휕 푙(휃)
휕훽	 =

휕훬
휕훽

휆 휆
휕훬
휕훽 + 0

휆푌 푡 푘 + 푘
+

휆 휆훬 + 푘 δ
휆푌 푡 푘 + 푘

+
휕훬
휕훽

1
훬 −

2휆훬
푌 + −

1
훬

휕훬
휕훽 −

2휆
푌

휕훬
휕훽

휕훬
휕훽  

 

휕 푙(휃)
휕훽	 =

휆
휆푌 푡 푘 + 푘

휕훬
휕훽 +

휆 휆훬 + 푘 δ
휆푌 푡 푘 + 푘

휕 훬
휕훽

+
휕 훬
휕훽

1
훬 −

2휆훬
푌 + −

1
훬 −

2휆
푌

휕훬
휕훽  

 

휕 푙(휃)
휕훽	 =

⎣
⎢
⎢
⎢
⎡

⎝

⎜
⎛휆

휕훬 푡 푘
휕훽 +

휕 훬 푡 푘
휕훽 휆훬 푡 푘 + 푘 δ

휆푌 푡 푘 + 푘

⎠

⎟
⎞

+
휕 훬
휕훽 −

1
훬

−
2휆
푌

+
휕 훬
휕훽 −

1
훬 −

2휆훬
푌

⎦
⎥
⎥
⎥
⎤

																																																																																																																																									(23) 

 

휕 푙(휃)
휕푘휕훽	 =

⎣
⎢
⎢
⎢
⎡ 휆

휕훬 푡 푘
휕훽 2푘δ휆푌 푡 푘 + 2푘δ − 푘휆훬 푡 푘 + 푘 δ

휆푌 푡 푘 + 푘
−

푘휆
휕훬 푡 푘

휕훽
휆푌 푡 푘 + 푘

⎦
⎥
⎥
⎥
⎤
																																⋯ (24) 

휕 푙(휃)
휕 ∝ 휕 ∝ = 푍 푒푥푝 ∝ +∝ 푥

휕푙(휃)
휕δ + 푒푥푝 ∝ +∝ 푥

휕 푙(휃)
휕δ

푥  

 

휕 푙(휃)
휕 ∝ = 푍 푒푥푝 ∝ +∝ 푍

휕푙(휃)
휕δ +

휕 푙(휃)
휕δ

																																																																																																																															⋯ (25)	 

휕 푙(휃)
휕 ∝ = 푒푥푝 ∝ +∝ 푍

휕푙(휃)
휕δ + 푒푥푝 ∝ +∝ 푍

휕 푙(휃)
휕δ

 

 

휕 푙(휃)
휕 ∝ = 푍 푒푥푝 ∝ +∝ 푍

휕푙(휃)
휕δ +

휕 푙(휃)
휕δ

																																																																																																																															⋯ (26)	 

 

휕 푙(휃)
휕 ∝ = 푍 푒푥푝 ∝ +∝ 푍

휕푙(휃)
휕δ + 푒푥푝 ∝ +∝ 푍

휕 푙(휃)
휕δ

 

 

휕 푙(휃)
휕 ∝ = 푍 푒푥푝 ∝ +∝ 푍

휕푙(휃)
휕δ +

휕 푙(휃)
휕δ

																																																																																																																														⋯ (27)		 

 

휕 푙(휃)
휕 ∝ 휕훽	 = 푒푥푝 ∝ +∝ 푥 	.		

휕 푙(휃)
휕δ 휕훽 																																																																																																																																												⋯ (28)		 
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휕 푙(휃)
휕 ∝ 휕훽	 = 푍 푒푥푝 ∝ +∝ 푥 	.		

휕 푙(휃)
휕δ 휕훽 																																																																																																																																										⋯ (29)	 

 
 

휕 푙(휃)
휕휆휕훽	 =

⎣
⎢
⎢
⎢
⎡1
2
⎩
⎨

⎧2 2휆훬 푡 푘
휕훬 푡 푘

휕훽 + 푘 δ
휕훬 푡 푘

휕훽
휆푌 푡 푘 + 푘

−
푌 푡 푘 휆

휕훬 푡 푘
휕훽

휆푌 푡 푘 + 푘
⎭
⎬

⎫

+
1
2 −

훬
푌

휕훬
휕훽

⎦
⎥
⎥
⎤
																																																																																																																																																		⋯ (30) 

 

휕 푙(휃)
휕휆휕δ

1
2

2훬 푡 푘 푘
휆푌 푡 푘 + 푘

−
푌 푡 푘 푘

휆푌 푡 푘 + 푘
																																																																																																																⋯ (31) 

 

휕 푙(휃)
휕휆휕 ∝ = 푒푥푝 ∝ +∝ 푥 	.		

휕 푙(휃)
휕휆휕δ 																																																																																																																																																	⋯ (32) 

 

휕 푙(휃)
휕휆휕 ∝ = 푍 푒푥푝 ∝ +∝ 푍 	.		

휕 푙(휃)
휕휆휕δ 																																																																																																																																													⋯ (33) 

 

휕 푙(휃)
휕푘휕δ =

1
2

2푘휆 훬 푡 푘 푌 푡 푘 + 4푘 휔 휆푌 푡 푘 + 푘

휆푌 푡 푘 + 푘
− 2푘δ 																																																																												⋯ (34) 

 
휕 푙(휃)
휕푘휕휆	

=
휆푌 푡 푘 + 푘 푌 푡 푘 − 휆푌 푡 푘

휆푌 푡 푘 + 푘

+
휆푌 푡 푘 + 푘 4푘 휔 휆훬 푡 푘 + 2푘 δ 푌 푡 푘 푘훬 푡 푘

휆푌 푡 푘 + 푘

−
휆훬 푡 푘 + 푘 휔 2푘δ 휆푌 푡 푘 + 푘 δ − 푘휆훬 푡 푘 2휆푌 푡 푘 + 2푌 푡 푘 + 푘

휆푌 푡 푘 + 푘
																								⋯ (35) 

 

휕 푙(휃)
휕푘휕 ∝ = 푒푥푝 ∝ +∝ 푍

휕 푙(휃)
휕푘휕δ 																																																																																																																																																							⋯ (36) 

 

휕 푙(휃)
휕푘휕 ∝ = 푍 푒푥푝 ∝ +∝ 푍

휕 푙(휃)
휕푘휕δ 																																																																																																																																																				⋯ (37) 

 

휕푙(휃)
휕 ∝ = 푒푥푝 ∝ +∝ 푍

휕푙(휃)
휕δ 																																																																																																																																																													⋯ (38) 

 

휕푙(휃)
휕 ∝ = 푍 푒푥푝 ∝ +∝ 푍

휕푙(휃)
휕δ 																																																																																																																																																										⋯ (39) 

and then the fisher information matrix can be developed as given below:  
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퐸 −
휕 푙(휃)
휕 ∝ 퐸 −

휕 푙(휃)
휕 ∝ 휕 ∝ 퐸 −

휕 푙(휃)
휕 ∝ 휕푘	 퐸 −

휕 푙(휃)
휕 ∝ 휕휆	 퐸 −

휕 푙(휃)
휕 ∝ 휕훽	

퐸	 −
휕 푙(휃)

휕 ∝ 휕 ∝ 퐸 −
휕 푙(휃)
휕 ∝ 퐸 −

휕 푙(휃)
휕 ∝ 휕푘	 퐸 −

휕 푙(휃)
휕 ∝ 휕휆	 퐸 −

휕 푙(휃)
휕 ∝ 휕훽	

퐸 −
휕 푙(휃)
휕 ∝ 휕푘	

퐸 −
휕 푙(휃)
휕 ∝ 휕휆	

퐸 −
휕 푙(휃)
휕 ∝ 휕훽	

퐸 −
휕 푙(휃)
휕 ∝ 휕푘	

퐸 −
휕 푙(휃)
휕 ∝ 휕휆	

퐸 −
휕 푙(휃)
휕 ∝ 휕훽	

퐸 −
휕 푙(휃)
휕푘	

퐸 −
휕 푙(휃)
휕푘휕휆	

퐸 −
휕 푙(휃)
휕푘휕훽		

퐸 −
휕 푙(휃)
휕푘휕휆	

퐸 −
휕 푙(휃)
휕휆	

−
휕 푙(휃)
휕휆휕훽	

퐸 −
휕 푙(휃)
휕푘휕훽		

퐸 −
휕 푙(휃)
휕휆휕훽	

퐸 −
휕 푙(휃)
휕훽	

 

																																																																																																																																																																																																																																																																																											⋯ (40) 
 

The log-likelihood function can be maximized to obtain maximum likelihood estimator MLEs. The direct maximization of log-
likelihood function gives equations which are computationally difficult to solve. Under the truncated normal distribution, direct 
maximization of the likelihood function often yields a solution far away from the MLE.  
 

Numerical Example  
 

Following the approach of  Yang et.al.(2007)is used here to illustrate the proposed procedure. A case study was observed in the 
Micro Electro Mechanical System Lab(MEMS LAB), Faculty of Engineering and technology, Annamalai university, a total of 50 
resistors in a constant stress ADT,  Where 30 Samples observed at the electrical connector is failed if the data are collected under 
three temperature levels: 55℃	, 75℃	, 100℃	.where observed every   measurement time stress different temperature, it was 
assume that the normal use temperature and threshold value for percent increase in resistance was l=6, the samples  is tabulated in 
table 1,the 7th point of the second unit under 55℃ labeled blank as indicated by Yang et al.(2007) to preserve the monotone 
behaviour of the stress relaxation and the measurement approaches under each temperature level. For more detailed discussion 
refer toBagdonavicius and Nikulin, (2001), Lawless, and Crowder, (2010), Leydold and Hörmann, (2011). 
 

Table 1 Stress relaxation data under the temperature level  
 

Temperature Sl.No Stress loss 
 

Mean 
Time 

55℃ 
 

1 2.13, 2.06, 3.43, 4.36, 5.86, 6.24, 6.63, 7.34, 7.58, 8.42, 9.57 

7.60 

2 2.34, 3.65, 4.69, 4.85, 5.36, 0, 6.59, 8.48, 9.35, 10.95 
3 2.8, 3.56, 4.65, 5.89, 6.3, 7.65, 8.95, 9.21, 10.45, 11.32 
4 2.96, 3.58, 5.38, 5.32, 7.68, 8.27, 8.61, 9.854, 10.97, 11.57 
5 3.65, 4.55, 5.33, 7.58, 8.39, 9.37, 9.33, 10.24, 11.89, 12.54, 13.59  
6 3.59, 5.69, 5.87, 6.29, 8.98, 10.25, 11.00, 12.69, 13.69, 15.91 

75℃ 
 

7 2.98, 4.98, 5.87, 6.38, 8.56, 10.21, 11.98, 11.00, 13.24, 15.38 

10.65 

8 3.65, 4.27, 6.29, 8.91, 9.54, 10.14, 12.69, 14.32, 16.90 
9 3.69, 4.28, 6.72, 8.34, 8.64, 10.81, 11.20, 14.57, 16.90, 18.18 
10 3.58, 4.92, 6.91, 7.34, 9.38, 11.78, 12.98, 13.92, 15.39, 18.29 
11 3.58, 4.87, 7.96, 8.64, 10.94, 12.61, 13.94, 15.38, 17.82, 19.34 
12 5.96, 5.89, 8.91, 9.67, 12.67, 13.54, 15.98, 17.51, 20.64, 23.94 

100℃ 
 

13 4.89, 5.91, 8.47, 9.38, 11.84, 13.57, 15.94, 16.97, 18.54, 19.82 

14.09 

14 4.94, 6.85, 7.95, 9.64, 10.87, 12.67, 15.47, 16.32, 18.94, 21.98 
15 5.97, 6.31, 8.57, 10.91, 12.97, 14.51, 16.78, 18.96, 19.49, 21.34 
16 4.25, 7.58, 9.34, 10.64, 13.95, 15.27, 16.97, 19.84, 20.46, 22.7 
17 5.94, 6.28, 8.94, 12.73, 14.61, 16.37, 18.39, 21.78, 22.96, 24.75 
18 4.18, 8.91, 10.94, 12.71, 15.67, 17.64, 19.78, 21.64, 24.97, 28.45 
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Table 2 Measurement time under differenttemperatures 
 

Temperature Measurement time epochs (in hours) 
55℃ 107,238, 540, 838, 1063, 1249, 1536, 1789, 2164, 2414, 1812 
75℃ 45, 109, 247, 411, 641, 758, 1017, 1232, 1621, 249 

100℃ 44, 110, 204, 322, 457, 684, 847, 1041, 1204 
 

In the following, we will determine the optimal ADT plans based on both models. Assume 10 units are available for the ADT test. 
In the ADT, we set 휏 = 24, and 푘 = 14		for all	푗 = 1,2, … . 퐽.this setting means that we measure the degradation level once every 
day, and the test lasts two weeks. Our planning involves selecting the stress level, (푥 ,푥 , … ,푥 ) , and the proportion of samples 
allocated to each testing level, (푁 ,푁 , … ,푁 )) . Consider a two-level ADT plan. Suppose we are interested in minimizing the 
asymptotic variance of 10, the 0.1-quantile of the failure time distribution at use conditions. When,퐽 = 2 yields the optimal ADT 
design 
 

The elements of fisher matrix by solving through mat lab are: 
 

⎣
⎢
⎢
⎢
⎡ −1.258 × 10 −1.269 × 10 −1.6891 × 10 −20.91 × 10 −1.62 × 10
−1.18 × 10 −8.94510 × 10 −1.6541 × 10 −15.7351 × 10 −1.127 × 10

−1.26578 × 10
−21.32 × 10
−1.29 × 10

−1.3298 × 10
−15.761 × 10
−1.113 × 10

−6.791 × 10
−8.458 × 10
−1.325 × 10

−8.734 × 10
−4.9780 × 10
−1.39 × 10

−1.339 × 10
−1.38 × 10
−5.69 × 10 ⎦

⎥
⎥
⎥
⎤

 

 

Table 3 Optimization table for random drift model 
 

Process 풙ퟏ 풙ퟐ 푵ퟏ 푵ퟐ 푺풕풅(흋풑) 
Random drift model 0 1 1 9 4216 

 

The optimal ADT design is shown in the above table. It is attractive to observe that optimal lower stress value is 0. This result is 
true because the degradation under the normal use condition is quick enough so that the error caused by extrapolation to the 
failure threshold is small, even if we test the unit under use conditions. 
 

Table 4 Optimization table for simple IG process 
 

Process 풙ퟏ 풙ퟐ 푵ퟏ 푵ퟐ 푺풕풅(흋풑) 
Simple Inverse 
Gaussianmodel 0 1 1 9 17450 

 

SUMMARY AND CONCLUSION  
 

In this Paper we have considered random drift model for the study since this model takes into result unit to unit variation of the 
sample of product. Different methods are developed with the time to test the product. But in the electronic industry accelerated 
degradation test gets more usefulness compared to the other methods. Since company produces large sample of similar products 
so there is need to test the product in short duration. So accelerated degradation test is more suitable and effective for studying the 
degradation performance since in life testing, increase the value of stress to fail the part quickly and collect the degradation data 
for predicting the reliability of the product.  
 

Different type of accelerating degradation models have developed with the time and can be used in different types of situations. 
But, it has become necessary for the manager to test how many no of units should be tested at a particular stress level so that the 
cost of testing is less. Simple Stress Accelerated Degradation Test method has been developed by considering various criterions 
required such as robustness of design, optimality of design, tightened the value of constrained etc. So, inverse Gaussian process is 
used for the optimization of no of units and stress value. The proposed model discussed in this paper provides estimation of the no 
of units necessary for optimum stress level by minimizing the value of asymptotic variance. Fisher information matrix is a useful 
tool for estimating value of vectors used for finding the asymptotic variance 
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