COMPARISON OF PERIODONTOPATHOGENS AND DETECTION OF TETRACYCLINE RESISTANCE GENES BY PCR

Sri Vasavi Kadiyala¹ and Gopinath P²*

¹BDS 3rd year, Saveetha Dental College, Chennai
²Department of Microbiology, Saveetha Dental College, Chennai

ARTICLE INFO

Article History:
Received 20th December, 2016
Received in revised form 24th January, 2017
Accepted 6th February, 2017
Published online 28th March, 2017

Key words:
Periodontopathogens, Chronic Periodontitis, Aggressive Periodontitis, Tetracycline, Pcr

ABSTRACT

Periodontal disease is the result of an imbalance in the microbial ecology of the oral cavity, and it also depends on host susceptibility.[1] Studies have shown a close association between periodontitis and the presence of a specific group of microorganisms, mainly Porphyromonas gingivalis, Aggregatibacter, Actinomyces, T. denticola and Tannerella forsythia. Thus, this study is to compare the periodontopathogens and to detect the tetracycline resistance genes by PCR among patients with different periodontal conditions. In our study, T. forsythia was the most frequently detected pathogen in 5/5 (100%) chronic periodontitis and 4/5 (80%) aggressive periodontitis patients. Actinomyces and T. denticola were the least detected pathogen as it detected only one sample of chronic periodontitis case. Upon subjected them to tetracycline resistance gene (TetM gene), all were negative. T. forsythia and Actinomyces were the most frequently and least detected periodontic pathogens respectively. Tetracycline resistance was not observed in our isolates. This study reveals the knowledge on the prevalence of peripathogens and tetracycline resistance gene in our region.

MATERIALS AND METHODS

Five subgingival samples from each periodontic cases which includes chronic periodontitis and aggressive periodontitis as well as healthy population were subjected to 16s rDNA analysis for P. gingivalis, T. denticola, T. forsythia, A. actinomycetemcomitans, P. intermedia and Eikenellacorrodens followed by the detection of tetracycline resistance genes (TetM) by PCR as per the following cyclic condition. Detection of the gene was carried out using primer as depicted in table 1. Bacterial DNA was extracted by boiling lysis method. 1 µL of DNA extract was used as template for PCR reaction. The reaction mixture contained 2mM of MgCl₂, 0.2mM dNTP mix and 0.5µM of can gene with IU of Taq polymerase (New England Biolabs) in a 1x PCR buffered reaction. A positive control of S. aureus with cna gene was also included in this study. PCR amplification was carried out using thermal cycler (Eppendorf) with the following cycling condition. Initial denaturation at 97°C for 1 min and 35 cycles for 30s, 54°C for 1min and 74°C for 1min, followed by a final extension of 10 min at 72°C. PCR products were resolved in 1.5% agarose gel. A 100bp ladder was including in all the gel analysis.[6]

Five subgingival samples from each periodontic cases which includes chronic periodontitis and aggressive periodontitis as well as healthy population were subjected to 16s rDNA analysis for P. gingivalis, T. denticola, T. forsythia, A. actinomycetemcomitans, P. intermedia and Eikenellacorrodens followed by the detection of tetracycline resistance genes (TetM) by PCR as described elsewhere. The amplicons were resolved in 4% agarose gel electrophoresis and findings were compared.

INTRODUCTION

Periodontal disease is the result of an imbalance in the microbial ecology of the oral cavity, and it also depends on host susceptibility.[1] Studies have shown a close association between periodontitis and the presence of a specific group of microorganisms, mainly Porphyromonas gingivalis, Aggregatibacter, Actinomyces, T. denticola and Tannerella forsythia. Thus, this study is to compare the periodontopathogens and to detect the tetracycline resistance genes by PCR among patients with different periodontal conditions. The treatments of periodontitis, both topical and systemically. [4,5]. Thus, this study is to compare the periodontopathogens and to detect the tetracycline resistance genes by PCR among patients with different periodontal conditions.

*Corresponding author: Gopinath P
Department of Microbiology, Saveetha Dental College, Chennai
RESULTS

In our study, T. forsythia was the most frequently detected pathogen in 5/5 (100%) chronic periodontitis and 4/5 (80%) aggressive periodontitis patients. A. actinomycetemcomitans was the least detected pathogen as it detected only one sample of chronic periodontitis case. Upon subjected them to tetracycline resistance gene (TetM gene), all were negative.

DISCUSSION

In this cross-sectional study, we used PCR to determine the prevalence of nine periodontopathogens in the subgingival microbiota of patients diagnosed as healthy gingivitis, CP and AgP. Study conducted by Collins and coworkers in 2016 have demonstrated that, 63.6% of P. micra, 54.5% of T. forsythia, 45.4% F. nucleatum and E. corrodens and followed by other periopathogens isolated from healthy population. Whereas, in case of chronic periodontitis cases, T. forsythia (96.7%) scored the first predominant pathogen and in case of aggressive periodontitis cases, Both F. nucleatum and T. denticola were the most identified bacteria. [6]

In contrast to their study, we found T. forsythia was the most frequently detected pathogen in 5/5 (100%) chronic periodontitis and 4/5 (80%) aggressive periodontitis patients. A. actinomycetemcomitans was the least detected pathogen as it detected only one sample of chronic periodontitis case.

Table 1 Gene sequencing of blaNDM-1 gene

<table>
<thead>
<tr>
<th>Primer</th>
<th>Primer sequence</th>
<th>Product size</th>
</tr>
</thead>
<tbody>
<tr>
<td>tetM</td>
<td>GCG TAC AAG CAC AGA CTC GT AGC CAT AGC GTA TCC CCT CC</td>
<td>1142bp</td>
</tr>
</tbody>
</table>

CONCLUSION

T. forsythia and A. actinomycetemcomitans were the most frequently and least detected periodontic pathogens respectively. Tetracycline resistance was not observed in our isolates. This study reveals the knowledge on the prevalence of periopathogens and tetracycline resistance gene in our region.

References

Please cite this article in press as:
http://dx.doi.org/10.24327/ijcar.2017.2725.0089
