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A R T I C L E  I N F O            

INTRODUCTION 
 

The Polish mathematician Stefan Banach1 
uniqueness of a fixed point. It is well known as a Banach fixed point theorem. The existence of a fixed point plays an import
role in several areas of mathematics, physics 
various ways.  
 

Kanan8  proved that, If T is a self mapping from a complete metric space X into itself with d(Tx,Ty) 
x, y ϵ X, where α ϵ [0, ½], then T has a unique fixed point in X.
 

Reich3 proved this result with d(Tx,Ty) ≤ α[d(Tx, x) + d(Ty, y) + β[d(Ty, x) + d(Tx, y)] + γd(x, y), for all x, y 
½]. 
 

Fisher7 in the same way proved this result with d(Tx,Ty) 
α ϵ [0, ½]. 
 

After that Chaterjee6 proved that the same result for d(Tx,Ty) 
 

The aim of this paper is to obtain a fixed point theorem for new rational inequality in complete metric space which satisfies
many results of great mathematicians.   
 

Main results 
 

Theorem: Let f be a continuous self mapping defined on complete metric 
 (X, d) such that  

d(fx,fy)  ≤  α
)y,x(d

d)fx,x(d)fy,y(d).fx,x(d 

+ β
fy,x(d)fy,y(d)fx,y(d)fx,x(d

)fy,x(d)fy,y(d)fx,y(d)fx,x(d
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           A B S T R A C T  
 

 

In this paper some fixed point theorems have been proved in a complete metric space 
which generalized the classical Banach contraction mapping principle and many results of 
great mathematicians.   
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 proved a theorem which ensures, under appropriate conditions, the existence and 
uniqueness of a fixed point. It is well known as a Banach fixed point theorem. The existence of a fixed point plays an import
role in several areas of mathematics, physics and engineering branches. This principle has been generalized by many authors in 

proved that, If T is a self mapping from a complete metric space X into itself with d(Tx,Ty) 
, then T has a unique fixed point in X. 

α[d(Tx, x) + d(Ty, y) + β[d(Ty, x) + d(Tx, y)] + γd(x, y), for all x, y 

in the same way proved this result with d(Tx,Ty) ≤ α[d(Ty, x) + d(Tx, y) for all x, y ϵ X, where 

proved that the same result for d(Tx,Ty) ≤ α[d(Tx, x) + d(Ty, y) + βd(x, y) for all x, y 

The aim of this paper is to obtain a fixed point theorem for new rational inequality in complete metric space which satisfies

Let f be a continuous self mapping defined on complete metric space 

)fx,y(d
 

)fy

)
+ γ

)fx,y(d)fy,y(d)y,x(d

)]fy,y(d)fx,x(d)[fy,x(d
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ξ
)fx,y(d)fy,y(d)y,x(d

)]fx,y(d)fy,x(d)[fx,x(d




+ δ[d(x, fx) + d(y, fy)] + η[d(y, fx) + d(x, fy)] +  

μd(x, y)                                                                                                                                                                                   (1) 
 

For all x, y ϵ X, x ≠ y and α, β, γ, δ, η, μ ϵ [0, 1) with 2α + 2β + γ + 4δ + 4η + 2μ ˂ 2. Then f has a unique fixed point in T. 
        

Proof:  Define a sequence {xn} by setting Tnx0 = xn, where n is a positive integer. Taking xn ≠ xn+1, then by (1)  
 

d(xn+1, xn) = d(fxn, fxn-1)    ≤ α
)x,x(d

)fx,x(d)fx,x(d)fx,x(d).fx,x(d

1nn
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 + δ[d(xn, fxn) + d(xn-1, fxn-1)] +  

 

η[d(xn-1, fxn) + d(xn, fxn-1)] + μd(xn, xn-1) 
or d(fxn, fxn-1) ≤ (α + β/2 + + δ + η)d(xn, xn+1) + (δ + η + μ)d(xn-1, xn) 

i.e. d(xn+1, xn) ≤ 
)2/(1 


 d(xn-1, xn) 

                                = λ d(xn-1, xn) 

Where λ = 
)2/(1 


 with 0 ≤ λ ˂ 1.  

 

In a similar way we can show that d(xn+1, xn) ≤ λn d(x0, x1).  
 

By triangle inequality we have for m ≥ n, 
d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ......... + d(xm-1, xm) 
              ≤ (λn + λn+1 + ....... + λm-1) d(x0,  x1) 

              ≤ 




1

n

 d(x0, x1) 

Since 0 ≤ λ ˂ 1,as n → ∞, λn → 0 which implies that d(xn, xm) → 0 i.e. {xn} is a cauchy sequence. 
 

So by completeness of X this sequence must be converge to u i. e. {xn} → x as n → ∞. Further, continuity of T in X implies 
T(x) = T(limn→∞xn) = limn→∞Txn = limn→∞xn+1 = x. Therefore x is a fixed point of T. 
 

Uniqueness: Let y ≠ x be another fixed point of f, where f(y) = y. Then by given condition, we have 
                   d(x, y) = d(f(x), f(y)) 
 

≤ α
)y,x(d

)fx,y(d)fx,x(d)fy,y(d).fx,x(d 
 + β

)fx,y(d)fy,y(d)y,x(d

)]fx,y(d)fy,x(d)[fx,x(d




+ γ

)fy,x(d)fy,y(d)fx,y(d)fx,x(d

)fy,x(d)fy,y(d)fx,y(d)fx,x(d




+ 

δ[d(x, fx) + d(y, fy)] + η[d(y, fx) + d(x, fy)] + 
 

μd(x, y)                                                                                                      
i.e.                d(x, y) ≤ (α + 2η + μ) d(x, y). 
 

Since 2α + 2β + γ + 4δ + 4η + 2μ ˂ 2, we obtained d(x, y) = 0, which implies x = y. Thus x is a unique fixed point of f. 
 

Theorem: Let f be a self mapping defined on complete metric space (X, d) such that (1) holds. If for some positive integer m, fm is 
continuous then f has a unique fixed point. 
 

Proof:  Define a sequence {xn} by setting fnx0 = xn, where n is a positive integer. Then {xn} converges to some point x in X. So 
the subsequence {xnk} of {xn} is also converges to x. 

So   
m
xf  = fm (limk→∞fxnk)  = (limk→∞fmxnk) =  (limk→∞xnk+m) = x 

Therefore x is a fixed point of fx. 

Now consider that p be the smallest positive integer such that 
P
xf = x but 

q
xf ≠ x for q = 1,2,3......p-1. If p ˃ 1, then 
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d(fx, x)  =   d(fx, 
p
xf  ) = d(fx, f(

1p
xf 

)) 

≤
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+ δ[d(x, fx) + d(fp-1x, fpx)] + 

 

η[d(fp-1x, fx) + d(x, fpx)] + μd(x, fp-1x)                                                                                                     

i.e. d(x, fx) ≤ 
)2/(1 


 d(x, fp-1x) 

or   d(x, fx) ≤ λ d(x, fp-1x), where λ = 
)2/(1 


 

 

Thus we can write,    d(x, fx) ≤  λp d(x, fx) 
 

But λp ˂ 1, we get a contradiction. Thus Tx = x i.e. x is a fixed point of f. 
Uniqueness follows as in theorem 1. 
 

Theorem: Let f be a continuous self mapping defined on complete metric space 
 

 (X, d) such that for some positive integer p, f satisfies:  

d(fpx, fpy) ≤ α
)y,x(d

)xf,y(d)xf,x(d)yf,y(d).xf,x(d pppp 
 + β
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+ γ

)yf,x(d)yf,y(d)xf,y(d)xf,x(d

)yf,x(d)yf,y(d)xf,y(d)xf,x(d
pppp

pppp




+ 

δ[d(x, fpx) + d(y, fpy)] + η[d(y, fpx) + d(x, fpy)] + μd(x, y)                                                                                              
 

For all x, y ϵ X, x ≠ y and α, β, γ, δ, η, μ ϵ [0, 1) with 2α + 2β + γ + 4δ + 4η + 2μ ˂ 2. If fp is continuous then f has a unique fixed 
point. 
 

Proof: By theorem 2, fp has a fixed point with fx = f(fpx) = fp(fx) so we get fx = x. Again fixed point of f is a fixed point of fp and 
fp has fixed point x, so x is the unique fixed point of f.  
 

Example: Let X = [0, 1] with the usual metric and f : X → X defined by 
                     fx = { 0, when 0 ≤ x ≤ 1/3 
                          = {1/3, when 1/3 ˂ x ≤ 1. 
 

Obviously f is discontinuous and does not satisfy theorem 1 when x = 1/3 and y = 1. But clearly f2 is continuous and satisfy 
theorem 3 with 0 is the unique fixed point of f2 and so of f.  
 

Remark 
 

1. If we put α = β = γ = δ = η = 0 we obtained the result of Banach [1]. 
2. If we put α = β = γ = η = μ = 0 we obtained the result of Kannan [8]. 
3. If we put α = β = γ = 0 we obtained the result of Reich [3]. 
4. If we put α = β = γ = η = 0 we obtained the result of Chatterjee [6]. 
5. If we put α = β = γ = δ = 0 we obtained the result of Fisher [7]. 
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