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In this paper we find the number of zeros of a polynomial in a closed disc, when the real 
and imaginary parts of the coefficients of the polynomial are restricted to certain 
conditions. 
 
 
 
 
 
 
 

 
 
 
 

 
 

 

 
 

 
 

 
 

 
 

  

INTRODUCTION 
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 2. Main  

 

RESULTS 
 

In this paper we prove the following result: 
 

Theorem 1: Let 
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For particular values of the parameters, we get many interesting results from  Theorem 1. For example, for R=1, 

10,  c , we get the following result: 

Corollary 1: Let 
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      For 121   , we get the following result from Theorem 1: 
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Lemmas  
For the proof of Theorem 2, we make use of the following lemmas: 

Lemma 1: Let f(z) (not identically zero)  be analytic for 0)0(,  fRz  and ,0)( kaf   nk ,......,2,1 . Then 
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Lemma 1 is the famous Jensen’s Theorem (see page 208 of [1]). 

Lemma 2: Let f(z)  be analytic , 0)0( f  and Mzf )( for Rz  . Then the number of zeros of f(z) in 1,  c
c

R
z is 
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)0(

log
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1

f

M

c
. 

Lemma 2 is a simple deduction from Lemma 1.  
4. Proofs of Theorems   
 Proof of Theorem 1: Consider the polynomial  
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That completes the proof of Theorem 1.  
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