International Journal of Current Advanced Research

ISSN: O: 2319-6475, ISSN: P: 2319 - 6505, Impact Factor: SJIF: 5.438
Available Online at www.journalijcar.org
Volume 6; Issue 2; February 2017; Page No. 2081-2086

Research Article

NUMBER OF ZEROS OF A POLYNOMIAL IN A CLOSED DISC

Gulzar M.H., Zargar B.A and Manzoor A.W

Department of Mathematics, University of Kashmir, Hazratbal, Srinagar 190006

ARTICLE INFO

Article History:

Received $29^{\text {th }}$ November, 2016
Received in revised form $30^{\text {th }}$ December, 2016
Accepted $4^{\text {th }}$ January, 2017
Published online $28^{\text {th }}$ February, 2017

Abstract

In this paper we find the number of zeros of a polynomial in a closed disc, when the real and imaginary parts of the coefficients of the polynomial are restricted to certain conditions.

Key words:

Coefficients, Polynomial, Zeros.

INTRODUCTION

In connection with a generalization of the Enestom-Kakeya Theorem [3,4] which states that all the n zeros of an nth degree polynomial $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ with $a_{n} \geq a_{n-1} \geq \ldots \ldots \geq a_{1} \geq a_{0}>0$ lie in $|z| \leq 1$, Gulzar [2] very recently proved the following result:

Theorem A: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n with $\operatorname{Re}\left(a_{j}\right)=\alpha_{j}, \operatorname{Im}\left(a_{j}\right)=\beta_{j}$, $j=0,1,2, \ldots \ldots, n$ such that for some $\lambda, \mu ; 0 \leq \lambda \leq n-1,0 \leq \mu \leq n-1$ and for some $k_{1}, k_{2} \leq 1 ; \tau_{1}, \tau_{2} \geq 1$,

$$
\begin{aligned}
& k_{1} \alpha_{n} \leq \alpha_{n-1} \leq \ldots \ldots \leq \tau_{1} \alpha_{\lambda} \\
& k_{2} \beta_{n} \leq \beta_{n-1} \leq \ldots \ldots \leq \tau_{2} \beta_{\mu},
\end{aligned}
$$

and

$$
\begin{aligned}
L & =\left|\alpha_{\lambda}-\alpha_{\lambda-1}\right|+\left|\alpha_{\lambda-1}-\alpha_{\lambda-2}\right|+\ldots \ldots+\left|\alpha_{1}-\alpha_{0}\right|+\left|\alpha_{0}\right|, \\
M & =\left|\beta_{\mu}-\beta_{\mu-1}\right|+\left|\beta_{\mu-1}-\beta_{\mu-2}\right|+\ldots \ldots+\left|\beta_{1}-\beta_{0}\right|+\left|\beta_{0}\right|,
\end{aligned}
$$

Then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in
$\left|z-\frac{\left(1-k_{1}\right) \alpha_{n}+i\left(1-k_{2}\right) \beta_{n}}{a_{n}}\right| \leq \frac{1}{\left|a_{n}\right|}\left[\tau_{1}\left(\alpha_{\lambda}+\left|\alpha_{\lambda}\right|\right)+\tau_{2}\left(\beta_{\mu}+\left|\beta_{\mu}\right|\right)-\left|\alpha_{\lambda}\right|-\left|\beta_{\mu}\right|-k_{1} \alpha_{n}-k_{2} \beta_{n}+L+M\right]$. 2. Main

RESULTS

In this paper we prove the following result:
Theorem 1: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n with $\operatorname{Re}\left(a_{j}\right)=\alpha_{j}, \operatorname{Im}\left(a_{j}\right)=\beta_{j}$,
$j=0,1,2, \ldots \ldots, n$ such that for some $\lambda, \mu ; 0 \leq \lambda \leq n-1,0 \leq \mu \leq n-1$ and for some $k_{1}, k_{2} \leq 1 ; \tau_{1}, \tau_{2} \geq 1$,

$$
\begin{aligned}
& k_{1} \alpha_{n} \leq \alpha_{n-1} \leq \ldots \ldots \leq \tau_{1} \alpha_{\lambda} \\
& k_{2} \beta_{n} \leq \beta_{n-1} \leq \ldots . . \leq \tau_{2} \beta_{\mu},
\end{aligned}
$$

and

$$
\begin{aligned}
L & =\left|\alpha_{\lambda}-\alpha_{\lambda-1}\right|+\left|\alpha_{\lambda-1}-\alpha_{\lambda-2}\right|+\ldots \ldots+\left|\alpha_{1}-\alpha_{0}\right|+\left|\alpha_{0}\right|, \\
M & =\left|\beta_{\mu}-\beta_{\mu-1}\right|+\left|\beta_{\mu-1}-\beta_{\mu-2}\right|+\ldots \ldots+\left|\beta_{1}-\beta_{0}\right|+\left|\beta_{0}\right|,
\end{aligned}
$$

Then the number of zero of $\mathrm{P}(\mathrm{z})$ in $\frac{\left|a_{0}\right|}{X} \leq|z| \leq \frac{R}{c}, c>1$ is less than or equal to $\frac{1}{\log c} \log \frac{A}{\left|a_{0}\right|}$ for $R \geq 1$ and the number of zeros of $\mathrm{P}(\mathrm{z})$ in $\frac{\left|a_{0}\right|}{Y} \leq|z| \leq \frac{R}{c}, c>1$ is less than or equal to $\frac{1}{\log c} \log \frac{B}{\left|a_{0}\right|}$ for $R \leq 1$, where

$$
\begin{aligned}
& X=\left|a_{n}\right| R^{n+1}+R^{n}\left[\left|\alpha_{n}\right|+\left|\beta_{n}\right|-k_{1(}\left(\left|\alpha_{n}\right|+\alpha_{n}\right)-k_{2}\left(\left|\beta_{n}\right|+\beta_{n}\right)+\tau_{1}\left(\left|\alpha_{\lambda}\right|+\alpha_{\lambda}\right)\right. \\
& \left.\quad+\tau_{2}\left(\left|\beta_{\mu}\right|+\beta_{\mu}\right)-\left|\alpha_{\lambda}\right|-\left|\beta_{\mu}\right|+L+M-\left|\alpha_{0}\right|-\left|\beta_{0}\right|\right\}, \\
& Y=\left|a_{n}\right| R^{n+1}+R\left[\left|\alpha_{n}\right|+\left|\beta_{n}\right|-k_{1(}\left(\left|\alpha_{n}\right|+\alpha_{n}\right)-k_{2}\left(\left|\beta_{n}\right|+\beta_{n}\right)+\tau_{1}\left(\left|\alpha_{\lambda}\right|+\alpha_{\lambda}\right)\right. \\
& \left.\quad+\tau_{2}\left(\left|\beta_{\mu}\right|+\beta_{\mu}\right)-\left|\alpha_{\lambda}\right|-\left|\beta_{\mu}\right|+L+M\right]-(1-R)\left(\left|\alpha_{0}\right|+\left|\beta_{0}\right|\right), \\
& A=\left|a_{n}\right| R^{n+1}+R^{n}\left[\left|\alpha_{n}\right|+\left|\beta_{n}\right|-k_{1(}\left(\left|\alpha_{n}\right|+\alpha_{n}\right)-k_{2}\left(\left|\beta_{n}\right|+\beta_{n}\right)+\tau_{1}\left(\left|\alpha_{\lambda}\right|+\alpha_{\lambda}\right)\right. \\
& \left.\quad+\tau_{2}\left(\left|\beta_{\mu}\right|+\beta_{\mu}\right)-\left|\alpha_{\lambda}\right|-\left|\beta_{\mu}\right|+L+M\right], \\
& B=\left|a_{n}\right| R^{n+1}+R\left[\left|\alpha_{n}\right|+\left|\beta_{n}\right|-k_{1(}\left(\left|\alpha_{n}\right|+\alpha_{n}\right)-k_{2}\left(\left|\beta_{n}\right|+\beta_{n}\right)+\tau_{1}\left(\left|\alpha_{\lambda}\right|+\alpha_{\lambda}\right)\right. \\
& \left.\quad+\tau_{2}\left(\left|\beta_{\mu}\right|+\beta_{\mu}\right)-\left|\alpha_{\lambda}\right|-\left|\beta_{\mu}\right|+L+M\right]-(1-R)\left(\left|\alpha_{0}\right|+\left|\beta_{0}\right|\right) .
\end{aligned}
$$

For particular values of the parameters, we get many interesting results from Theorem 1. For example, for $\mathrm{R}=1$, $c=\delta, 0<\delta<1$, we get the following result:
Corollary 1: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n with $\operatorname{Re}\left(a_{j}\right)=\alpha_{j}, \operatorname{Im}\left(a_{j}\right)=\beta_{j}$, $j=0,1,2, \ldots \ldots, n$ such that for some $\lambda, \mu ; 0 \leq \lambda \leq n-1,0 \leq \mu \leq n-1$ and for some $k_{1}, k_{2} \leq 1 ; \tau_{1}, \tau_{2} \geq 1$,

$$
\begin{aligned}
& k_{1} \alpha_{n} \leq \alpha_{n-1} \leq \ldots \ldots \leq \tau_{1} \alpha_{\lambda} \\
& k_{2} \beta_{n} \leq \beta_{n-1} \leq \ldots . . \leq \tau_{2} \beta_{\mu},
\end{aligned}
$$

and

$$
\begin{aligned}
L & =\left|\alpha_{\lambda}-\alpha_{\lambda-1}\right|+\left|\alpha_{\lambda-1}-\alpha_{\lambda-2}\right|+\ldots \ldots+\left|\alpha_{1}-\alpha_{0}\right|+\left|\alpha_{0}\right|, \\
M & =\left|\beta_{\mu}-\beta_{\mu-1}\right|+\left|\beta_{\mu-1}-\beta_{\mu-2}\right|+\ldots \ldots+\left|\beta_{1}-\beta_{0}\right|+\left|\beta_{0}\right|,
\end{aligned}
$$

Then the number of zero of $\mathrm{P}(\mathrm{z})$ in $\frac{\left|a_{0}\right|}{X} \leq|z| \leq \delta, 0<\delta<1$ is less than or equal to $\frac{1}{\log \frac{1}{\delta}} \log \frac{A}{\left|a_{0}\right|}$, where

$$
\begin{aligned}
X= & \left|a_{n}\right|+\left|\alpha_{n}\right|+\left|\beta_{n}\right|-k_{1(}\left(\left|\alpha_{n}\right|+\alpha_{n}\right)-k_{2}\left(\left|\beta_{n}\right|+\beta_{n}\right)+\tau_{1}\left(\left|\alpha_{\lambda}\right|+\alpha_{\lambda}\right) \\
& +\tau_{2}\left(\left|\beta_{\mu}\right|+\beta_{\mu}\right)-\left|\alpha_{\lambda}\right|-\left|\beta_{\mu}\right|+L+M-\left|\alpha_{0}\right|-\left|\beta_{0}\right|, \\
A=\left|a_{n}\right| & +\left|\alpha_{n}\right|+\left|\beta_{n}\right|-k_{1(}\left(\left|\alpha_{n}\right|+\alpha_{n}\right)-k_{2}\left(\left|\beta_{n}\right|+\beta_{n}\right)+\tau_{1}\left(\left|\alpha_{\lambda}\right|+\alpha_{\lambda}\right) \\
& +\tau_{2}\left(\left|\beta_{\mu}\right|+\beta_{\mu}\right)-\left|\alpha_{\lambda}\right|-\left|\beta_{\mu}\right|+L+M .
\end{aligned}
$$

For $\tau_{1}=\tau_{2}=1$, we get the following result from Theorem 1:
Corollary 2: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n with $\operatorname{Re}\left(a_{j}\right)=\alpha_{j}, \operatorname{Im}\left(a_{j}\right)=\beta_{j}$, $j=0,1,2, \ldots \ldots, n$ such that for some $\lambda, \mu ; 0 \leq \lambda \leq n-1,0 \leq \mu \leq n-1$ and for some $k_{1}, k_{2} \leq 1$,

$$
\begin{aligned}
& k_{1} \alpha_{n} \leq \alpha_{n-1} \leq \ldots \ldots \leq \alpha_{\lambda} \\
& k_{2} \beta_{n} \leq \beta_{n-1} \leq \ldots \ldots \leq \beta_{\mu},
\end{aligned}
$$

and

$$
\begin{aligned}
L & =\left|\alpha_{\lambda}-\alpha_{\lambda-1}\right|+\left|\alpha_{\lambda-1}-\alpha_{\lambda-2}\right|+\ldots \ldots+\left|\alpha_{1}-\alpha_{0}\right|+\left|\alpha_{0}\right|, \\
M & =\left|\beta_{\mu}-\beta_{\mu-1}\right|+\left|\beta_{\mu-1}-\beta_{\mu-2}\right|+\ldots \ldots+\left|\beta_{1}-\beta_{0}\right|+\left|\beta_{0}\right|,
\end{aligned}
$$

Then the number of zero of $\mathrm{P}(\mathrm{z})$ in $\frac{\left|a_{0}\right|}{X} \leq|z| \leq \frac{R}{c}, c>1$ is less than or equal to $\frac{1}{\log c} \log \frac{A}{\left|a_{0}\right|}$ for $R \geq 1$ and the number of zeros of $\mathrm{P}(\mathrm{z})$ in $\frac{\left|a_{0}\right|}{Y} \leq|z| \leq \frac{R}{c}, c>1$ is less than or equal to $\frac{1}{\log c} \log \frac{B}{\left|a_{0}\right|}$ for $R \leq 1$, where

$$
\begin{aligned}
& X=\left|a_{n}\right| R^{n+1}+R^{n}\left[\left|\alpha_{n}\right|+\left|\beta_{n}\right|-k_{1(}\left(\left|\alpha_{n}\right|+\alpha_{n}\right)-k_{2}\left(\left|\beta_{n}\right|+\beta_{n}\right)-\alpha_{\lambda}\right. \\
& \left.\quad-\beta_{\mu}+L+M-\left|\alpha_{0}\right|-\left|\beta_{0}\right|\right\}, \\
& Y=\left|a_{n}\right| R^{n+1}+R\left[\left|\alpha_{n}\right|+\left|\beta_{n}\right|-k_{1(}\left(\left|\alpha_{n}\right|+\alpha_{n}\right)-k_{2}\left(\left|\beta_{n}\right|+\beta_{n}\right)-\alpha_{\lambda}\right. \\
& \left.\quad \quad-\beta_{\mu}+L+M\right]-(1-R)\left(\left|\alpha_{0}\right|+\left|\beta_{0}\right|\right), \\
& A=\left|a_{n}\right| R^{n+1}+R^{n}\left[\left|\alpha_{n}\right|+\left|\beta_{n}\right|-k_{1(}\left(\left|\alpha_{n}\right|+\alpha_{n}\right)-k_{2}\left(\left|\beta_{n}\right|+\beta_{n}\right)-\alpha_{\lambda}\right. \\
& \left.\quad-\beta_{\mu}+L+M\right], \\
& B=\left|a_{n}\right| R^{n+1}+R\left[\left|\alpha_{n}\right|+\left|\beta_{n}\right|-k_{1(}\left(\left|\alpha_{n}\right|+\alpha_{n}\right)-k_{2}\left(\left|\beta_{n}\right|+\beta_{n}\right)-\alpha_{\lambda}\right. \\
& \left.\quad-\beta_{\mu}+L+M\right]-(1-R)\left(\left|\alpha_{0}\right|+\left|\beta_{0}\right|\right) .
\end{aligned}
$$

For $k_{1}=k_{2}=\tau_{1}=\tau_{2}=1$, we get the following result from Theorem 1:
Corollary 3: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n with $\operatorname{Re}\left(a_{j}\right)=\alpha_{j}, \operatorname{Im}\left(a_{j}\right)=\beta_{j}$,
$j=0,1,2, \ldots \ldots ., n$ such that for some $\lambda, \mu ; 0 \leq \lambda \leq n-1,0 \leq \mu \leq n-1$,

$$
\begin{aligned}
& \alpha_{n} \leq \alpha_{n-1} \leq \ldots . . \leq \alpha_{\lambda} \\
& \beta_{n} \leq \beta_{n-1} \leq \ldots . . \leq \beta_{\mu},
\end{aligned}
$$

and

$$
\begin{aligned}
L & =\left|\alpha_{\lambda}-\alpha_{\lambda-1}\right|+\left|\alpha_{\lambda-1}-\alpha_{\lambda-2}\right|+\ldots \ldots+\left|\alpha_{1}-\alpha_{0}\right|+\left|\alpha_{0}\right|, \\
M & =\left|\beta_{\mu}-\beta_{\mu-1}\right|+\left|\beta_{\mu-1}-\beta_{\mu-2}\right|+\ldots \ldots+\left|\beta_{1}-\beta_{0}\right|+\left|\beta_{0}\right|,
\end{aligned}
$$

Then the number of zero of $\mathrm{P}(\mathrm{z})$ in $\frac{\left|a_{0}\right|}{X} \leq|z| \leq \frac{R}{c}, c>1$ is less than or equal to $\frac{1}{\log c} \log \frac{A}{\left|a_{0}\right|}$ for $R \geq 1$ and the number of zeros of $\mathrm{P}(\mathrm{z})$ in $\frac{\left|a_{0}\right|}{Y} \leq|z| \leq \frac{R}{c}, c>1$ is less than or equal to $\frac{1}{\log c} \log \frac{B}{\left|a_{0}\right|}$ for $R \leq 1$, where

$$
\begin{aligned}
& X=\left|a_{n}\right| R^{n+1}+R^{n}\left[\alpha_{n}+\beta_{n}-\alpha_{\lambda}-\beta_{\mu}+L+M-\left|\alpha_{0}\right|-\left|\beta_{0}\right|\right], \\
& \left.Y=\left|a_{n}\right| R^{n+1}+R\left[\alpha_{n}\right)+\beta_{n}-\alpha_{\lambda}-\beta_{\mu}+L+M\right]-(1-R)\left(\left|\alpha_{0}\right|+\left|\beta_{0}\right|\right), \\
& A=\left|a_{n}\right| R^{n+1}+R^{n}\left[-\alpha_{n}-\beta_{n}-\alpha_{\lambda}-\beta_{\mu}+L+M\right], \\
& B=\left|a_{n}\right| R^{n+1}+R\left[-\alpha_{n}-\beta_{n}-\alpha_{\lambda}-\beta_{\mu}+L+M\right]-(1-R)\left(\left|\alpha_{0}\right|+\left|\beta_{0}\right|\right) .
\end{aligned}
$$

Lemmas

For the proof of Theorem 2, we make use of the following lemmas:
Lemma 1: Let $\mathrm{f}(\mathrm{z})$ (not identically zero) be analytic for $|z| \leq R, f(0) \neq 0$ and $f\left(a_{k}\right)=0, k=1,2, \ldots \ldots, n$. Then

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left\lvert\, f\left(\operatorname{Re}^{i \theta}|d \theta-\log | f(0) \left\lvert\,=\sum_{j=1}^{n} \log \frac{R}{\left|a_{j}\right|} .\right.\right.\right.
$$

Lemma 1 is the famous Jensen's Theorem (see page 208 of [1]).
Lemma 2: Let $\mathrm{f}(\mathrm{z})$ be analytic, $f(0) \neq 0$ and $|f(z)| \leq M$ for $|z| \leq R$. Then the number of zeros of $\mathrm{f}(\mathrm{z})$ in $|z| \leq \frac{R}{c}, c>1$ is less than or equal to $\frac{1}{\log c} \log \frac{M}{|f(0)|}$.
Lemma 2 is a simple deduction from Lemma 1.

4. Proofs of Theorems

Proof of Theorem 1: Consider the polynomial

$$
\begin{aligned}
F(z)= & (1-z) P(z) \\
= & (1-z)\left(a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots \ldots+a_{1} z+a_{0}\right) \\
= & -a_{n} z^{n+1}+\left(a_{n}-a_{n-1}\right) z^{n}+\ldots \ldots+\left(a_{\lambda+1}-a_{\lambda}\right) z^{\lambda+1}+\left(a_{\lambda}-a_{\lambda-1}\right) z^{\lambda} \\
& \quad+\ldots .+\left(a_{1}-a_{0}\right) z+a_{0} \\
= & -a_{n} z^{n+1}-\left(k_{1}-1\right) \alpha_{n} z^{n}+\left(k_{1} \alpha_{n}-\alpha_{n-1}\right) z^{n}+\left(\alpha_{n-1}-\alpha_{n-2}\right) z^{n-1} \ldots \ldots+\left(\alpha_{\lambda+1}-\tau_{1} \alpha_{\lambda}\right) z^{\lambda+1} \\
& \quad+\left(\tau_{1}-1\right) \alpha_{\lambda} z^{\lambda+1}+\left(\alpha_{\lambda}-\alpha_{\lambda-1}\right) z^{\lambda}+\ldots \ldots+\left(\alpha_{1}-\alpha_{0}\right) z+i\left\{\left(k_{2} \beta_{n}-\beta_{n-1}\right) z^{n}\right. \\
& \quad-\left(k_{2}-1\right) \beta_{n} z^{n}+\ldots \ldots+\left(\beta_{\mu+1}-\tau_{2} \beta_{\mu}\right) z^{\mu+1}+\left(\tau_{2}-1\right) \beta_{\mu} z^{\mu+1}+\left(\beta_{\mu}-\beta_{\mu-1}\right) z^{\mu} \\
& \left.\quad+\ldots \ldots+\left(\beta_{1}-\beta_{0}\right) z\right\}+a_{0} \\
= & G(z)+a_{0}
\end{aligned}
$$

where

$$
\begin{aligned}
& G(z)=-a_{n} z^{n+1}-\left(k_{1}-1\right) \alpha_{n} z^{n}+\left(k_{1} \alpha_{n}-\alpha_{n-1}\right) z^{n}+\left(\alpha_{n-1}-\alpha_{n-2}\right) z^{n-1} \ldots \ldots+\left(\alpha_{\lambda+1}-\tau_{1} \alpha_{\lambda}\right) z^{\lambda+1} \\
& \quad+\left(\tau_{1}-1\right) \alpha_{\lambda} z^{\lambda+1}+\left(\alpha_{\lambda}-\alpha_{\lambda-1}\right) z^{\lambda}+\ldots \ldots+\left(\alpha_{1}-\alpha_{0}\right) z+i\left\{\left(k_{2} \beta_{n}-\beta_{n-1}\right) z^{n}\right. \\
& \quad-\left(k_{2}-1\right) \beta_{n} z^{n}+\ldots \ldots+\left(\beta_{\mu+1}-\tau_{2} \beta_{\mu}\right) z^{\mu+1}+\left(\tau_{2}-1\right) \beta_{\mu} z^{\mu+1}+\left(\beta_{\mu}-\beta_{\mu-1}\right) z^{\mu} \\
& \left.\quad+\ldots \ldots+\left(\beta_{1}-\beta_{0}\right) z\right\}
\end{aligned}
$$

For $|z|=R$, we have, by using the hypothesis

$$
\begin{aligned}
& |G(z)| \leq\left|a_{n}\right||z|^{n+1}+\left(1-k_{1}\right)\left|\alpha _ { n } \left\|\left.z\right|^{n}+\left(1-k_{2}\right)\left|\beta_{n} \| z\right|^{n}+\left[\left|k_{1} \alpha_{n}-\alpha_{n-1}\right||z|^{n}+\left|\alpha_{n-1}-\alpha_{n-2}\right||z|^{n-1}+\ldots . .\right.\right.\right. \\
& +\left|\alpha_{\lambda+1}-\tau_{1} \alpha_{\lambda}\right||z|^{\lambda+1}+\left(\tau_{1}-1\right)\left|\alpha_{\lambda}\right||z|^{\lambda+1}+\left|\alpha_{\lambda}-\alpha_{\lambda-1}\right||z|^{\lambda}+\ldots \ldots+\left|\alpha_{1}-\alpha_{0}\right||z| \\
& +\left|k_{2} \beta_{n}-\beta_{n-1}\right||z|^{n}+\left|\beta_{n-1}-\beta_{n-2}\right||z|^{n-1} \ldots \ldots+\left|\beta_{\mu+1}-\tau_{2} \beta_{\mu}\right||z|^{\mu+1}+\left(\tau_{2}-1\right)\left|\beta_{\mu}\right||z|^{\mu} \\
& \left.+\left|\beta_{\mu}-\beta_{\mu-1}\right||z|^{\mu-1}+\ldots \ldots+\left|\beta_{1}-\beta_{0}\right||z|\right] \\
& =\left|a_{n}\right| R^{n+1}+\left(1-k_{1}\right)\left|\alpha_{n}\right| R^{n}+\left(1-k_{2}\right)\left|\beta_{n}\right| R^{n}-\left[\left|k_{1} \alpha_{n}-\alpha_{n-1}\right| R^{n}+\left|\alpha_{n-1}-\alpha_{n-2}\right| R^{n-1}+\ldots . .\right. \\
& +\left|\alpha_{\lambda+1}-\tau_{1} \alpha_{\lambda}\right| R^{\lambda+1}+\left(\tau_{1}-1\right)\left|\alpha_{\lambda}\right| R^{\lambda+1}+\left|\alpha_{\lambda}-\alpha_{\lambda-1}\right| R^{\lambda}+\ldots \ldots+\left|\alpha_{1}-\alpha_{0}\right| \\
& +\left|k_{2} \beta_{n}-\beta_{n-1}\right| R^{n}+\left|\beta_{n-1}-\beta_{n-2}\right| R^{n-1}+\ldots \ldots+\left|\beta_{\mu+1}-\tau_{2} \beta_{\mu}\right| R^{\mu+1}+\left(\tau_{2}-1\right)\left|\beta_{\mu}\right| R^{\mu+1} \\
& \left.\left.+\ldots \ldots+\left|\beta_{1}-\beta_{0}\right| R\right\}\right] \\
& \leq\left|a_{n}\right| R^{n+1}+R^{n}\left[\left(1-k_{1}\right)\left|\alpha_{n}\right|+\left(1-k_{2}\right)\left|\beta_{n}\right|+\left|k_{1} \alpha_{n}-\alpha_{n-1}\right|+\left|\alpha_{n-1}-\alpha_{n-2}\right|+\ldots . .\right. \\
& +\left|\alpha_{\lambda+1}-\tau_{1} \alpha_{\lambda}\right|+\left(\tau_{1}-1\right)\left|\alpha_{\lambda}\right|+\left|\alpha_{\lambda}-\alpha_{\lambda-1}\right|+\ldots \ldots+\left|\alpha_{1}-\alpha_{0}\right| \\
& +\left|k_{2} \beta_{n}-\beta_{n-1}\right|+\left|\beta_{n-1}-\beta_{n-2}\right|+\ldots \ldots+\left|\beta_{\mu+1}-\tau_{2} \beta_{\mu}\right|+\left(\tau_{2}-1\right)\left|\beta_{\mu}\right| \\
& \left.+\ldots \ldots+\left|\beta_{1}-\beta_{0}\right|\right] \\
& =\left|a_{n}\right| R^{n+1}+R^{n}\left[\left(1-k_{1}\right)\left|\alpha_{n}\right|+\left(1-k_{2}\right)\left|\beta_{n}\right|+\alpha_{n-1}-k_{1} \alpha_{n}+\alpha_{n-2}-\alpha_{n-1}+\ldots \ldots\right. \\
& +\tau_{1} \alpha_{\lambda}-\alpha_{\lambda+1}+\left(\tau_{1}-1\right)\left|\alpha_{\lambda}\right|+\left|\alpha_{\lambda}-\alpha_{\lambda-1}\right|+\ldots \ldots+\left|\alpha_{1}-\alpha_{0}\right|
\end{aligned}
$$

$$
\begin{aligned}
&+\beta_{n-1}-k_{2} \beta_{n}+\beta_{n-2}-\beta_{n-1}+\ldots . .+\tau_{2} \beta_{\mu}-\beta_{\mu+1}+\left(\tau_{2}-1\right)\left|\beta_{\mu}\right| \\
&\left.+\ldots \ldots+\left|\beta_{1}-\beta_{0}\right|\right] \\
&=\left|a_{n}\right| R^{n+1}+R^{n}\left[\left|\alpha_{n}\right|+\left|\beta_{n}\right|-k_{1(}\left(\left|\alpha_{n}\right|+\alpha_{n}\right)-k_{2}\left(\left|\beta_{n}\right|+\beta_{n}\right)+\tau_{1}\left(\left|\alpha_{\lambda}\right|+\alpha_{\lambda}\right)\right. \\
&\left.+\tau_{2}\left(\left|\beta_{\mu}\right|+\beta_{\mu}\right)-\left|\alpha_{\lambda}\right|-\left|\beta_{\mu}\right|+L+M-\left|\alpha_{0}\right|-\left|\beta_{0}\right|\right\} \\
&=\mathrm{X}
\end{aligned}
$$

for $R \geq 1$
and for $R \leq 1$

$$
\begin{aligned}
&|G(z)| \leq\left|a_{n}\right| R^{n+1}+R\left[\left|\alpha_{n}\right|+\left|\beta_{n}\right|-k_{1(}\left(\left|\alpha_{n}\right|+\alpha_{n}\right)-k_{2}\left(\left|\beta_{n}\right|+\beta_{n}\right)+\tau_{1}\left(\left|\alpha_{\lambda}\right|+\alpha_{\lambda}\right)\right. \\
&\left.\quad+\tau_{2}\left(\left|\beta_{\mu}\right|+\beta_{\mu}\right)-\left|\alpha_{\lambda}\right|-\left|\beta_{\mu}\right|+L+M\right]-(1-R)\left(\left|\alpha_{0}\right|+\left|\beta_{0}\right|\right)
\end{aligned}
$$

Since G (z) is analytic for $|z| \leq R, G(0)=0$, it follows by Schwarz Lemma that

$$
|G(z)| \leq X|z| \text { for } R \geq 1 \text { and }|G(z)| \leq Y|z| \text { for } R \leq 1 .
$$

Hence for $R \geq 1$,

$$
\begin{aligned}
|F(z)| & =\left|a_{0}+G(z)\right| \\
& \geq\left|a_{0}\right|-|G(z)| \\
& \geq\left|a_{0}\right|-X|z| \\
& >.0
\end{aligned}
$$

if $|z|<\frac{\left|a_{0}\right|}{X}$
and for $R \leq 1$

$$
|F(z)|>0
$$

if $|z|<\frac{\left|a_{0}\right|}{Y}$.
This shows that $\mathrm{F}(\mathrm{z})$ and hence $\mathrm{P}(\mathrm{z})$ does not vanish in $|z|<\frac{\left|a_{0}\right|}{X}$ for $R \geq 1$ and in $|z|<\frac{\left|a_{0}\right|}{Y}$ for $R \leq 1$. In other words all the zeros of $\mathrm{P}(\mathrm{z})$ lie in $|z| \geq \frac{\left|a_{0}\right|}{X}$ for $R \geq 1$ and in $|z| \geq \frac{\left|a_{0}\right|}{Y}$ for $R \leq 1$.
Again, for $|z| \leq R$, it is easy to see as above that

$$
\begin{gathered}
|F(z)| \leq\left|a_{n}\right| R^{n+1}+R^{n}\left[\left|\alpha_{n}\right|+\left|\beta_{n}\right|-k_{1(}\left(\left|\alpha_{n}\right|+\alpha_{n}\right)-k_{2}\left(\left|\beta_{n}\right|+\beta_{n}\right)+\tau_{1}\left(\left|\alpha_{\lambda}\right|+\alpha_{\lambda}\right)\right. \\
\left.\quad+\tau_{2}\left(\left|\beta_{\mu}\right|+\beta_{\mu}\right)-\left|\alpha_{\lambda}\right|-\left|\beta_{\mu}\right|+L+M\right]
\end{gathered}
$$

=A
for $R \geq 1$
and

$$
\begin{gather*}
|F(z)| \leq\left|a_{n}\right| R^{n+1}+R\left[\left|\alpha_{n}\right|+\left|\beta_{n}\right|-k_{1(}\left(\left|\alpha_{n}\right|+\alpha_{n}\right)-k_{2}\left(\left|\beta_{n}\right|+\beta_{n}\right)+\tau_{1}\left(\left|\alpha_{\lambda}\right|+\alpha_{\lambda}\right)\right. \\
\left.+\tau_{2}\left(\left|\beta_{\mu}\right|+\beta_{\mu}\right)-\left|\alpha_{\lambda}\right|-\left|\beta_{\mu}\right|+L+M\right]-(1-R)\left(\left|\alpha_{0}\right|+\left|\beta_{0}\right|\right)
\end{gather*}
$$

for $R \leq 1$.
Hence, by using Lemma 1, it follows that the number of zeros of $\mathrm{F}(\mathrm{z})$ and therefore $\mathrm{P}(\mathrm{z})$ in $\frac{\left|a_{0}\right|}{X} \leq|z| \leq \frac{R}{c}, c>1$ is less than or equal to $\frac{1}{\log c} \log \frac{A}{\left|a_{0}\right|}$ for $R \geq 1$ and the number of zeros of $\mathrm{F}(\mathrm{z})$ and therefore $\mathrm{P}(\mathrm{z})$ in $\frac{\left|a_{0}\right|}{Y} \leq|z| \leq \frac{R}{c}, c>1$ is less than or equal to $\frac{1}{\log c} \log \frac{B}{\left|a_{0}\right|}$ for $R \leq 1$.

That completes the proof of Theorem 1.

References

1. L. V. Ahlfors, Complex Analysis, $3^{\text {rd }}$ edition, Mc-Grawhill.
2. M. H. Gulzar,B.A. Zargar and A. W. Manzoor, Zeros of a Polynomial with Restricted Coefficients, International Research Journal of Advanced Engineering and Science, Vol 3No. 2 (2017).
3. M. Marden, Geometry of Polynomials, Math. Surveys No. 3, Amer. Math.Soc.(1966).
4. Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, New York (2002).
