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INTRODUCTION

In connection with a generalization of the Enestom-Kakeya Theorem [3,4] which states that all the n zeros of an nth degree

polynomial P(z) = Zajzj witha, 2a, , 2.....2a, 2a, >0 licin |Z| <1, Gulzar [2] very recently proved the
=0
following result:

Theorem A: Let P(z) = Zajzj be a polynomial of degree n with Re(a;) =a,, Im(a,)=f,,
=0

j=0,L2,......,n such that for some A4, ;0<A<n—-1,0<u<n-1 andforsomek k, <1;7,,7, 21,
ka,<a,, <...<r0a,
kB, <P, S ST,8,,

and

Mz‘ﬂy_ﬂy—l‘—i—‘ﬂ/t—l_ﬂy—Z‘—'— ------ +|ﬁ1_ﬂo|+|ﬁo

Then all the zeros of P(z) lie in

1
Sa—[rl(al +|aﬂ|)+rz(ﬂﬂ +‘ﬂﬂ‘)—|aﬂ|—‘ﬂﬂ‘—k1an —k,p,+ L+ M].2. Main

n

. (-k)a, +i(l=k,)B,

a |

n

RESULTS

In this paper we prove the following result:

Theorem 1: Let P(z) = Z:;ajzj be a polynomial of degree n with Re(a,;)=«;, Im(a;) =4,
J=

Jj =0,L2,......,n such that for some A4, 1;0<A<n-1,0< u<n-1 andforsomek k, <l;7,,7, 21,
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ka, <a, ,<...<10,

n-1 —

kB, < By S ST,

and
L=|a4—al_1|+|aﬁ_l—al_2|+ ...... +|a1—
:‘ﬂy_ﬂy—l‘—'_‘ﬂy—l_ﬂy—Z‘—'_ ------ +|ﬂ1_ﬂo|+|ﬂo’
Then the number of zero of P(z) in m<|Z| <£ , > lis less than or equal to ——1og—— for R >1and the number of
X c log |a0|
zeros of P(z) in MSM SE,C > 1 is less than or equal to logi for R <1, where
Y c logc a0|
X =l|a,[R"™" + R"[a,|+|B,| — k(| (o, +a,)
+ 0,8+ B ~|es |- |8, I
Y =|a, R™! +10,|— k(o (|0(/1|+0(/1)
+7, |+ B4
A=la,|R™ +R"[|e,|+|B,| -k (e (a,|+a,)
+0,(B.]+ B~ =| B+ L+ M1,
B=l|a,|R"" +Rlla,|+|B,| - k(o (a;|+a,)

+0,(B.]+ B~ e |-|B, .

For particular values of the parameters, we get many interesting results from Theorem 1. For example, for R=1,
c=0,0<0 <1, we get the following result:

Corollary 1: Let P(z) = z aij be a polynomial of degree n with Re(a,) =« ,, Im(a;) = pB,,

=0
j=0,12,......, n such that for some A, 1,0 <A <n—-10< y<n-1 and for somek,,k, <1;7,,7, 21,
ka <a, ,<...<10,
kB, <P, S ST,
and
L:|aﬂ—akl|+|aﬂfl—akz|+ ...... +|a1—a0|+|a0,
:‘ﬂﬂ_ﬂwl“"‘ﬁ;ﬂ_ﬂ,ﬁz“" ------ +|ﬂ1_ﬂo|+|ﬂ0,
2| 1
Then the number of zero of P(z) in —— < |Z| < 0,0 <6 < lis less than or equal to ——— log where
X log— |a0|
o
X =la,|+|a,|+|B.|— k(o (|ai|+aﬂ)
+ 0B+ B o] =B+ L+ M |||y
A=|a,|+|a,|+|B,|— k(o (|a4|+a/1)
+7,( B

For 7, = 7, =1, we get the following result from Theorem 1:
Corollary 2: Let P(z) = Z aij be a polynomial of degree n with Re(a;)=«;, Im(a;)=f,,
j=0

j=0,12,......,n such that for some A4, ;,0<A<n—-1,0<u<n-1 andforsomek ,k, <1,
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ka <a,  <...fq,

kB, < By S B

and

...... +la, —ay| +|a),
=[B, = B #[ B = Bua|F ot B = B+ |Bo):

a A
Then the number of zero of P(z) in u < |Z| < —,c > lis less than or equal to ——log—— for R > 1and the number of
X c log |a0|

ay
zeros of P(z) in ——
Y

B
< |Z| < —,c¢ > lis less than or equal to log— for R <1, where
c logc |a0|

X =l|a,[R"™" + R"[a,|+|B,| -k (|«
=B, +L+M—|a |- |8}
Y =la,|R™" | =k (e
D
A=la,|R"™ +R"[|a,|+|B,| -k, (e
-p,+L+M],
=la,|R"™" | =Ky (e

- B, +L+M]-(1-R)a|+|5,).

For ky =k =17, =17, =1, we get the following result from Theorem 1

Corollary 3: Let P(z) = Zajzj be a polynomial of degree n with Re(a;)=«;, Im(a;)=f,,

=0

j=0,12,......, n such that forsome A, ;0 <A<n—-1,0< u<n—-1
a,sa,, <.sa,
B, <P S SB,,

and

o, =]+ et |, -
=[B, = B #[ B = Buo|+ et B = Bo| +|Bo):

a 1 A
Then the number of zero of P(z) in u < |Z| < —,c > lis less than or equal to ——log—— for R > 1and the number of
X c loge |a0|

ay
zeros of P(z) in % < |Z| < —,c¢ > 1is less than or equal to
C

B
log— for R <1, where
logc |a0|

:|a a, —ﬁﬂ+L+M—|a0| |ﬁ0|],

n Rn+1 +Rn[an +ﬂn -

Y =la,[R™ +Rla,)+ B, —a, = B, +L+M]-(1=R)(ay| +|f,)
A=|a |R™ +R"[-a, - B, -a, =B, +L+M],
B=|a,|R"" + R[-a, - B

w =By =, = B+ Lt M= (1= R)(ato| +[Bo)-
Lemmas
For the proof of Theorem 2, we make use of the following lemmas

Lemma 1: Let f(z) (not identically zero) be analytic for |Z| <R, f(0)#0 and f(ak) =0, k=12,...... ,n.Then
1 (2n i S R
— j log|f (Re"’|d0 —log|f(0)] = Y log =
27 = e
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Lemma 1 is the famous Jensen’s Theorem (see page 208 of [1]).

R
Lemma 2: Let f(z) be analytic, f(0)# 0 and |f(Z)| <M for |Z| < R . Then the number of zeros of f(z) in |Z| <—,c>lis
C

M

less than or equal to L log——.
loge | f(0)|
Lemma 2 is a simple deduction from Lemma 1.
4. Proofs of Theorems
Proof of Theorem 1: Consider the polynomial

F(z)=(1-2)P(2)
=(-z)a,z" +a, z"" +..+az+a,)

A+1

=—a,z"+(a,—a, )z" +..+(a,,, —a)z"" +(a,-a, )z’

+ent(a, —ay)z+a,

=—a,z" —(k,-Da,z"+(ka,-a, )" +(a,  —a,,)z" " ..+ (a,, —10a,)z""
+(r, D,z +(a, —a, )z" +.t (o, —a )z +i{(k, B, — B,.)z"
_(kz _l)ﬂnzn to +(ﬂ/4+1 _TZﬂ‘u)Z/H—] +(TZ _l)ﬂyz/ﬁ—l +(ﬂ/t _ﬂlu—l)zy
+.. + (B, — Bz} +a,
=G(z)+a,,
where
G(z)=-a,z"™" —(k, -Da,z" +(ka, —a, )z" +(a, , —a, ,)z" "t (a,,, —1,a,)z""

+(r, - Da,z"" +(a, —a, )z" +.c+ (o, —ay)z+i{(k,B, - B,.,)z"
—(k, =DB,z" +...... +(:B,u+1 _Tzﬁy)zﬂﬂ +(7, _l)ﬁyzﬂﬂ +(ﬂy _IB#—I )z#
+ o, +(B, - B,)z}

For |Z| = R, we have, by using the hypothesis
G(2)| <|a, +(1-k,) "+ (1-k,)

n n—1

+

n+l

Z

n
+ [|k1an - anfl

Z

B,

A+1

z Z

a, |z a,, —a,,

n n

"t |ey a7

+|0%+1 -1,a, ||z|“1 + (7, _1)|051 ||z +|0% —aH”z

B, = Bl + 1B = Bsllel B — B + (2 = D|B]2
+18, = B+t |B = B
=la,|R"™" +(1=k)|e,|R" +1-k,)|B,[R" [k, =, ,|R" +|a, ; —a, ,|R"" +.....
+|0‘/1+1 —1'105/~L|Rl+1 +(z, —1)05/1|R“1 +|0{/1 —OtH|RZ Fo e, —a0|
ks B, = B[R (B, = Ba|R™ + oot B — 2 B[R + (2, = D|B, R
Foet | B = Bo|RY]
<la,|R™ + R"[A=k)|e,| + A= k,)\|B,| + |k, — |+ |,y — 2| + .o

a0, |+t —

+|0%+1 —rlozi|+(r1 —l)|aﬂ|+

kB, = B+ 1B = Bra| H o4 | B 7B+ (7, =B
Foet | B = Bol]
=la,|[R"™" +R"[(1-k)|e, |+ A=Kk, |+a, , ke, +a, ,—a, +...

+rlaﬂ—aﬂ+l+(rl—1)|aﬂ|+|ai—aﬂfl|+ ...... +|0{1—0{0|
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B =B+ By = B+t T, = B + (7, =B

Fot | B = Bl
=la, R™! L=k (a, (|a/1|+ag)
+ 0B+ B =l =B+ L+ M ~Jag| =B
=X
for R>1
and for R<1
|G(z)|£ a,|R™! +|8,| -k, (| (|a/1|+a/1)
+7, | +]Ba)
=Y
Since G (z) is analytic for |Z| < R,G(0) =0, it follows by Schwarz Lemma that
|G(Z)| < X|Z| for R >1 and |G(Z)| < Y|Z| for R<1.
Hence for R>1 ,
|F(2)| =|a, + G(2)
2a)-lo)
Z|aJ——)ﬂz|
>.0
it | <2 o
and for R <1
|F(2)|>0
it |2 < fau]
This shows that F(z) and hence P(z) does not vanish in |Z| < % R>1 andin |Z| < | Y| for R <1 .In other words all
the zeros of P(z) lie in |Z| > |X| for R>1 andin |Z| > |Y| for R<1 .
Again , for |Z| < R.,it is easy to see as above that
|F(Z)|S|Cln R™ +|B,| -k (o (|0‘4|+0‘/1)
+ 0B+ B~ = | B+ L+ M]
=A
for R>1
and
|F(z)|£|anR"+1 +|B,| -k (o Qalykal)
0, (B]+ B o] = |Bul+ L+ MT= A= R)(exo | +],))
=B
for R<1.

Hence , by using Lemma 1, it follows that the number of zeros of F(z) and therefore P(z) in

|a0| < |Z| < 5 ,C > lis less than or equal to —— ! log—
X c loge  |ay|

Jao|
Y

for R > 1and the number of zeros of F(z) and therefore P(z) in

R 1 B
< |Z| < —,c > lis less than or equal to ——log— for R<1.
c logc a0|
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That completes the proof of Theorem 1.
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