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A R T I C L E  I N F O                              

INTRODUCTION 
 

Soil is one of the basic natural resources, and its description 
and evaluation are critical (Soil Survey Staff, 
the most reliable method for soil analysis is the routine 
conventional or traditional laboratory method. Unfortunately, 
the conventional methods of soil sampling and laboratory 
analysis are expensive, time and chemicals consuming, 
laborious, and require a lot of preparation stages (Disla
2014). The global need is for faster, cheaper, more cost
efficient methods and also having enough soil spatial data 
which will be used in environmental monitoring, modeling, 
mapping, and precision agriculture (Dammate
 

Over the past 35 years, Diffuse Reflectance 
(DRS) has proven high efficiency for estimating soil 
properties. This technique can be applied in both laboratory 
and field conditions by using spectroradiometers. It can 
estimate many soil properties at the same time with minimum 
or without samples preparation (Kadupitiya
Vis-NIR-MIR spectral range (0.35 to 25 µm) is suitable for 
estimating the majority of soil properties (Ogen
Nowadays, multivariate statistics and chemometrics are used 
in the prediction of soil parameters by quantitative soil 
spectroscopy, and these techniques still growing (Chabrillat
al., 2013).  
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                             A B S T R A C T  
 

 

This study aimed to apply the partial least square regression algorithm to estimate different 
soil parameters. Surface soil samples were collected and analyzed for some parameters (i.e. 
pH, sand, silt, clay, and CEC) using the conventional methods of soil analysis. 
Hyperspectral signatures of soil samples were collected in the range of Vis
(350-2500nm) using the analytical spectroradiometer device (ASD) in the laboratory 
conditions. The PLSR model was applied to soil spectra and soil parameters’ data to 
develop the calibration and validation models. The obtained results showed that sand and 
CEC soil parameters recorded an excellent predictability with R
RPD values 3.00 and 2.41, respectively. The rest soil parameters such as pH, silt and clay 
were having moderate predictability whereas R2 values were 0.68, 0.50, and 0.62, and RPD 
values were 1.84, 1.41 and 1.70, respectively. The diffuse reflectance spectroscopy 
integrated with multivariate regression models such as PLSR could successfully estimate 
soil parameters with good prediction. This technique was found to be promising for soil 
parameters’ prediction. It saves time, effort, chemicals, and many soil parameters that can 
be estimated simultaneously.  

 
 
 
 

Soil is one of the basic natural resources, and its description 
Soil Survey Staff, 2011). For a fact, 

the most reliable method for soil analysis is the routine 
conventional or traditional laboratory method. Unfortunately, 
the conventional methods of soil sampling and laboratory 
analysis are expensive, time and chemicals consuming, 

ous, and require a lot of preparation stages (Dislaet al., 
2014). The global need is for faster, cheaper, more cost-
efficient methods and also having enough soil spatial data 
which will be used in environmental monitoring, modeling, 

agriculture (Dammateet al., 2015).  

eflectance Spectroscopy 
(DRS) has proven high efficiency for estimating soil 
properties. This technique can be applied in both laboratory 

spectroradiometers. It can 
estimate many soil properties at the same time with minimum 
or without samples preparation (Kadupitiyaet al., 2010). The 

MIR spectral range (0.35 to 25 µm) is suitable for 
estimating the majority of soil properties (Ogenet al, 2019). 
Nowadays, multivariate statistics and chemometrics are used 
in the prediction of soil parameters by quantitative soil 
spectroscopy, and these techniques still growing (Chabrillatet 

Data analysis techniques are dependent on the number of 
spectral variables of the soil spectral data. The spectral data 
obtained from field or laboratory conditions by ground 
spectrometers are noisy and hard to be evaluated. Here the role 
of spectral transformation appears to clean noises, correct non
linearity measurement, sample variations and develop fit soil 
spectral curves (Stenberg, 
Regression (PLSR) is the most popular and widely used 
technique in chemometrics for quantitative analysis of 
reflectance spectra (Woldet al.,
hyperspectral RS technique to predict a soil property could be 
evaluated using statistical parameters such as the correlation 
coefficient (R2), the Root Mean 
Ratio of Performance Deviation (RPD) which are commonly 
used for the DRS technique (Woodcock, 2006).
 

Many researchers reported good results with regression 
analysis for soil properties characterization. Li 
used the PLSR method to estimate the soil nitrogen; R
0.57. Sh. et al. (2015) used Vis
predict SOM (R2=0.74) from newly acquired spectral by 
applying the PLSR method. T
Alaska, USA, where soil OC was predicted in the NIR range 
of spectra with R2=0.41 (Zabowski
(2013) applied the PLSR technique on Vis
reflectance data to predict soil sand, silt and clay 
0.60 and 0.80, respectively). Rossel
in across the Vis-NIR-MIR spectra to analyze the soil 
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soil parameters. Surface soil samples were collected and analyzed for some parameters (i.e. 
pH, sand, silt, clay, and CEC) using the conventional methods of soil analysis. 
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conditions. The PLSR model was applied to soil spectra and soil parameters’ data to 
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CEC soil parameters recorded an excellent predictability with R2 values 0.91 and 0.86, and 
RPD values 3.00 and 2.41, respectively. The rest soil parameters such as pH, silt and clay 

values were 0.68, 0.50, and 0.62, and RPD 
values were 1.84, 1.41 and 1.70, respectively. The diffuse reflectance spectroscopy 
integrated with multivariate regression models such as PLSR could successfully estimate 

with good prediction. This technique was found to be promising for soil 
parameters’ prediction. It saves time, effort, chemicals, and many soil parameters that can 

Data analysis techniques are dependent on the number of 
spectral variables of the soil spectral data. The spectral data 
obtained from field or laboratory conditions by ground 

ectrometers are noisy and hard to be evaluated. Here the role 
of spectral transformation appears to clean noises, correct non-
linearity measurement, sample variations and develop fit soil 

 2010). Partial Least Square 
egression (PLSR) is the most popular and widely used 

technique in chemometrics for quantitative analysis of 
et al., 2001).The ability of the 

hyperspectral RS technique to predict a soil property could be 
parameters such as the correlation 

ean Square Error (RMSE) and 
eviation (RPD) which are commonly 

used for the DRS technique (Woodcock, 2006). 

Many researchers reported good results with regression 
s for soil properties characterization. Li et al. (2015) 

used the PLSR method to estimate the soil nitrogen; R2 was 
(2015) used Vis-NIR spectral libraries to 
=0.74) from newly acquired spectral by 

applying the PLSR method. The same technique was used in 
Alaska, USA, where soil OC was predicted in the NIR range 

=0.41 (Zabowskiet al., 2011). Curcioet al. 
(2013) applied the PLSR technique on Vis-NIR and SWIR 
reflectance data to predict soil sand, silt and clay (R2=0.87, 
0.60 and 0.80, respectively). Rosselet al. (2006) applied DRS 

MIR spectra to analyze the soil 
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properties using the PLSR algorithm for prediction. They 
found that R2 values for pH, EC, OC, clay, silt and sand were 
0.73, 0.29, 0.72, 0.67, 52 and 0.75, respectively. Antonio et al. 
(2012) quantitatively predicted soil parameters using PLSR in 
Italy soils (R2=0.57, 0.50, 0.82 and 0.90 for sand, silt, clay, and 
OC) in vis-NIR-MIR regions. The integration between Vis-
NIR and PLSR model has an advantage for determining soil 
EC with R2=0.90 (Fikratet al., 2016). Mouazenet al. (2010) 
found that the PLSR model was able to predict SOC with 
R2=0.80. Srivastava et al., (2004) applied linear regression-
NIR modeling to predict some soil parameters in a part of 
central India, R2 values of pH, OC and clay were 0.77, 0.78 
and 51, respectively. By using the PCR model, Kadupitiya et 
al. (2010) were able to predict soil properties (pH, EC, and 
OC) in Punjab soils with R2=0.82, 0.85 and 0.79, respectively.  
The previous introduction reviewed the importance of diffuse 
reflectance spectroscopy with the application of the 
multivariate regression model for the prediction of soil 
parameters. Thus, the current study aimed to use the 
hyperspectral remote sensing technique integrated with PLSR 
for characterizing and predicting soil parameters, and also to 
assess the performance of the applied prediction model.  
 

MATERIALS AND METHODS 
 

The study area 
 

The study area is a part of the Cairo-Ismailia agriculture road 
and Ismailia canal with a total area of 760km2. It locates in the 
northeastern part of Nile delta with latitudes 30o27''6.4''to 
30o39'10.7'' and longitudes 31o41'54.16'' to 32o05'52.3''.The 
climatic data of Ismailia Governorate show a very low annual 
precipitation (≈22 mm/y). The minimum and maximum 
average of the annual temperature is 16.2� Cand 28.9� C 
(CLAC, 2010). The main water source is Nile water through 
the Ismailia Canal. The studied area has a hyperthermic 
temperature regime with a torric soil moisture regime. 
 

Soil sampling 
 

In the year 2019, thirty-one representative surface soil samples 
(0–25 cm) were collected according to the corresponding 
physiographic units in the study area. The soil samples were 
air-dried, ground and 2mm sieved to be scanned using the 
spectroradiometer and also analyzed for their properties. 
Figure (1) showed the location map of the study area and also 
the soil sampling locations.  
 

 
 

Fig 1 Location map of the study area and soil sampling locations. 

 
 
 

Hyperspectral data collection 
 

The hyperspectral reflectance data of each soil sample was 
obtained in the laboratory conditions using the Analytical 
Spectroradiometer Device (ASD) Model: PSR-3500 Serial: 
1166005 produced by Spectral Evolution, USA at the Vis-NIR 
spectral range (0.35-2.5μm). Soil samples were placed at a 5-
cm diameter Petri dish and the spectra were collected using a 
high-intensity light source probe. The instrument was 
optimized and calibrated using white spectral on for obtaining 
absolute reflectance readings before the samples were 
recorded. The average of 3 spectra was recorded at each soil 
sample to minimize noise produced by the instrument for 
obtaining the final spectra. The RS3 (version 6.3) inbuilt 
software was used to record the reflected spectra. 
 

Soil analysis 
  

Conventional methods of soil analysis were followed. Soil 
particle size distribution test was done using an international 
pipette method (Bashour and Sayegh 2007). The percentages 
of clay, silt, and sand were calculated. Soil PH was measured 
in the soil pasteby a potentiometric method using a glass 
electrode (Jackson, 1967). The cation exchange capacity of 
soil samples was determined using the method described by 
Page et al. (1982).  
 

Statistical analysis 
 

Simple statistical analysis was applied to the soil parameters’ 
data using MS excel software. Descriptive statistical analysis 
was done which minimum, maximum, mean, range, standard 
error, standard deviation; variance, mode, median, kurtosis and 
skewness parameters were calculated. Pearson correlation was 
applied to the obtained data, and correlation coefficient was 
calculated.  
 

Hyperspectral data pre-processing 
 

Soil spectral data collected in the hyperspectral remote sensing 
laboratory conditions at the range of spectra from 350 to 2500 
nm were arranged in text format (.csv files) to be easily 
processed. The original obtained spectral data were in 1nm 
interval, so it was converted to be in 5nm intervals using 
MATLAB (version 2019) software to reduce the spectral 
variables/bands number and to enhance the quality of the 
calibration and validation models of soil properties.  
 

Multivariate regression model application 
 

The PLSR is a commonly used technique for quantitative 
spectral analysis. It is used to develop prediction models when 
many predictor variables are highly collinear. The PLSR 
algorithm selects the best orthogonal factors that maximize the 
covariance between predictor (X spectra) and response 
variables (y laboratory data). By fitting a PLSR model, a few 
PLSR factors are selected to explain most of the variation in 
both predictors and responses. The PLSR decomposes X and y 
into factor scores (T) and factor loadings (P and q) according 
to the following equations (1 and 2). 
   

X = TP + E                                                                            (1) 
y = Tq + f                                                                              (2) 
 

whereas, X and y are mean-centered before decomposition. 
The decomposition is performed simultaneously and in such a 
way that the first few factors explain most of the variation in X 
and y. The remaining factors relate to noise and can be 
ignored, hence the addition of residuals E and f. Generally, the 
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resulting matrices and vectors have a much lower dimension 
than X and y. Therefore, given a new spectrum x, the soil 
property y can be estimated as a bilinear combination of the 
factor scores and factor loadings of x (Martens and Næs 1989). 
The PLS package in R studio software was used for 
developing the calibration and validation models of the 
different studied soil parameters. Soil spectral data and the 
laboratory soil data were combined in (.csv) files to be used in 
R software. Moreover, the spectral data, as well as the soil 
parameters’ data, were processed through different stages.  
 

For enhancing the modeling performance and the predictability 
of different soil parameters, data processing was done through 
the following stages: (i) data normalization (giving values 
between 0 and 1 for the soil spectral data); (ii) data dividing 
(the whole spectral and soil data were divided into two data 
sets; 80% of the data (n=24) was separated to be as a 
calibration data set and 20% of the data (n=7) for a validation); 
(iii) data sorting (data arrangement for the randomized 
distributing the values depending on their weights among the 
calibration and validation data sets); and (iv) removing the 
outliers (the much higher or lower values in the whole soil 
parameters’ data set were removed as outliers). 
 

Models quality evaluation (Validation of the developed 
prediction models) 
 

Two statistical indices were used for validation of developed 
prediction models and were the R2, Randomized Mean Square 
Error (RMSE), Ratio Prediction Deviation (RPD) as described 
by (Islam et al., 2003) and shown in equations (3, 4 and 5). 
 

The correlation coefficient (R2)         
 

R� = 1 − �
∑�������������

�

∑(��������)�
�                                             (3)          

                          

Where, Ypred = predicted values; Ymean = mean of measured 
values; Ymeas = measured values; n= number of predicted or 
measured values with I = 1, 2, ...n. 
 

Room Mean Square Error (RMSE)  
 

RMSE =  �
�

�Ʃ(���)�
																																																											(4) 

 

Where y is a predicted value of soil parameter and x is a 
measured value.  
 

Ratio of Performance Deviation (RPD)  
 

RPD =
��

����
                                                                    (5) 

 

where SD is the standard deviation of measured values in the 
validation dataset; and RMSE= root mean square error of 
prediction in the validation dataset. 
 

Chang et al. (2001) categorized the ability of NIR spectra to 
predict soil properties into three categories based on the ratio 
of performance deviation (RPD) and the Correlation 
coefficient (R2) values as shown in table (1). 
 

Table 1 Categories of NIR predictability of soil parameters 
 

Category RPD R2 Parameters 

A >2 1-0.8 
TC, TN, moisture, sand, silt, exch.Ca and 

CEC. 

B 2-1.4 0.8-0.5 
Clay, pH, mineralizable N, extractable K, 

Ca, Mg, Fe and Mn 

C <1.4 <0.5 Extractable Cu, P, Zn and Na. 

 

RESULTS AND DISCUSSION 
 

Soil characterization 
 

Descriptive statistical analysis of the soil properties data was 
given in table (2). From the obtained data, the soil of the 
studied area was ranged from non-alkaline to strongly alkaline 
whereas soil pH values were ranged from 7.14 to 8.29 with an 
average of 7.85. The dominant textural classes of these soils 
were sand and sandy loam. Clay loam and sandy clay loam 
classes were recorded for few samples. Sand fraction ranged 
from 28.50 to 84.60% with an average of 63.85%. The 
minimum and maximum values of silt were 10.90 and 36.3% 
with an average of 21.13%. Clay content ranged between 
3.20and35.20%. The CEC was low in general for these soils 
and ranged from 8.10to23.50Cmole (p+).kg-1. Table (3) 
showed the correlation among soil parameters.  
 

Table 2 Descriptive statistics of soil parameters. 
 

 
pH 

Sand Silt Clay CEC 
Cmole (p+).kg-1 (%) 

Mean 7.85 63.85 21.13 14.81 13.64 
Standard Error (S.E) 0.04 3.70 1.54 2.20 1.07 

Median 7.77 74.60 17.80 6.90 9.90 
Mode 7.75 83.20 12.20 5.70 8.20 

Standard Deviation (S.D) 0.23 20.60 8.56 12.23 5.96 
Sample Variance 0.05 424.41 73.28 149.63 35.54 

Kurtosis 1.99 -1.35 -1.30 -1.42 -1.52 
Skewness -0.08 -0.65 0.57 0.66 0.57 

Range 1.15 56.10 25.40 32.00 15.40 
Minimum 7.14 28.50 10.90 3.20 8.10 
Maximum 8.29 84.60 36.30 35.20 23.50 

 

Table 3 Pearson correlation between studied soil parameters. 
 

 
pH sand silt clay CEC 

pH 1 
    

sand -0.44 1 
   

silt 0.41 -0.99 1 
  

clay 0.45 -0.99 0.98 1 
 

CEC 0.39 -0.88 0.87 0.89 1 
 

High negative correlation was recorded between sand and silt, 
clay and CEC with correlation coefficient (r= -0.99, -0.99 and 
-0.88), respectively. Low correlation coefficient value was 
observed for pH (r=-0.44). High positive correlation was for 
silt-CEC (r= 0.87), silt-clay (r= 0.98) and clay-CEC (r= 0.89). 
Soil pH was positively correlated with silt, clay and CEC with 
correlation coefficient values (r=0.41, 0.45 and 0.39), 
respectively.  
 
Soil hyperspectral signature 
 
From the figure (2), it was shown that reflectance spectra of 
soil samples followed the same basic shape as observed by 
many researchers, with prominent absorption bands around 
1400, 1900, and 2200 nm (Shepherd and Walsh 2002). These 
bands are associated with clay minerals, for example, OH 
features of free water at 1400 and 1900 nm, and lattice OH 
features at 1400 and 2200 nm (Hunt 1980). 
 

PLSR-ASD modeling 
 

Table (4) showed the obtained results of PLSR-ASD modeling 
for the calibration and validation model using the data set of 
the study area. The obtained data of the validation model were 
plotted against the measured data of the different best-
predicted soil parameters and shown in the figure (3).  
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Fig (2) Soil Spectral signature of soil samples.
 

Table 4 The performance assessment of the 
and validation model of ASD data of the study area.

 

Parameter 
Calibration 

R2 RMSE RPD R
pH 0.98 0.01 33.41 0.68

Sand (%) 0.98 1.29 15.79 0.91
Silt (%) 0.99 0.26 35.00 0.50

Clay (%) 0.99 0.58 21.43 0.62
CEC (Cmole 

(p+).kg-1) 
0.99 0.41 13.52 0.86

 

From the obtained data, the PLSR calibration model was 
performing well for all soil parameters whereas values of 
R2>0.50 and RPD >1.40. The R2 values of calibration were 
0.98, 0.98, 0.99, 0.99 and 0.99 while RPD values of calibration 
were 33.41, 15.79, 35.00, 21.43 and 13.52 for pH, sand, silt, 
clay and CEC, respectively.  
 

The same performance was recorded for the prediction model 
developed for all soil parameters. The R2 values of validation 
were 0.68, 0.91, 0.50, 0.62 and 0.86 while RPD values of 
validation were 1.84, 3.00, 1.41, 1.70 and 2.41, respectively. 
These results are consistent withmany studies (i.e. the findings 
of Srivastava et al. (2004); Rossel et al. (2006); Kadupitiya
al. (2010); Curcio et al. (2013); etc.).  
 

According to the developed criteria of Chang 
the ability of Vis-NIR spectra to predict soil properties
and CEC soil parameters were under the ‘A’ 
R2values between 0.80 and 1.00 and RPD values more than 
2.00. Sand and CEC soil parameters can be well predicted 
using the PLSR prediction model.  
 

The rest soil parameters (pH, silt and clay) could be under the 
‘B’ category whereas R2 values between 0.50 and 0.80, and 
RPD values between 1.40 and 2.00. These soil parameters can 
be moderately predicted using the PLSR prediction model. 
 

CONCLUSION 
 

Soils of the studied area was alkaline and varied between fine 
and coarse in texture with low CEC. Partial Least Square 
Regression model was applied for developing the calibration 
and validation models for predicting the different soil 
parameters. Soil parameters (i.e. sand and CEC
predicted well by the PLSR prediction model with R
were between 0.80 and 1.00 and RPD values were 
2.00. Moderate performance was observed for the PLSR 
prediction model for estimating the rest soil parameters (pH, 
silt and clay). Hyperspectral reflectance data in the range of 
Viz-NIR (350-2500nm) which integrated with the partial least 
square regression PLSR model as an empirical technique, 
showed promising performance for soil parameters’ prediction. 
Further studies can be done with an application of several 
algorithms to enhance the prediction of soil parameters. 
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Fig (2) Soil Spectral signature of soil samples. 

The performance assessment of the PLSR calibration 
and validation model of ASD data of the study area. 

Validation 
R2 RMSE RPD 

0.68 0.12 1.84 
0.91 7.80 3.00 
0.50 7.34 1.41 
0.62 7.37 1.70 

0.86 6.09 2.41 

From the obtained data, the PLSR calibration model was 
performing well for all soil parameters whereas values of 
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were 33.41, 15.79, 35.00, 21.43 and 13.52 for pH, sand, silt, 

The same performance was recorded for the prediction model 
values of validation 

were 0.68, 0.91, 0.50, 0.62 and 0.86 while RPD values of 
validation were 1.84, 3.00, 1.41, 1.70 and 2.41, respectively. 
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Fig 3 The measured values plotting against the predicted values of soil 
parameters using the PLSR prediction model; pH, sand, silt, clay, and CEC.
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