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A R T I C L E  I N F O                              

 

INTRODUCTION 
 

Carbohydrates conjugated with heterocyclic compounds such 
as pyrroles (Legler, 1999; Panday et al., 2000). imidazoles 
(Tschamber et al., Terinek and Vasella,2005; M. Terinek and 
A. Vasella, 2005). Tetrazoles (Kru¨lle et al., 1997; Heightman 
et al., 1996; Pandayand Vasella.  2000) and triazoles (Davis 
al., 1999a; Davis et al., 1999b) are biologically attractive 
motifs, because they are potent glycosidase inhibitors. In 
particular, 1,2,3-triazole derivatives are emerging as potential 
pharmacophores (Bourne et al., 2004;Alvarez 
1994;Velazquez et al., 1998). On the other hand, combination 
of both carbohydrate and 1,2,3-triazole structures has led to the 
flouring field of conjugates that are powerful pharmacophores 
(Dedola et al., 2007; Leoneti etal., 2010; Dondoni, 2007). 
Besides, sugar derived 1,2,3-triazoles are also regarded as 
important precursors to analogues of some alkaloid antibiotics 
(Heightman and Vasella, 1999; Tezuka et al
and Wong, 2000), glycose phosphorylase (Bokor 
and antitubercular activity (Singh et al., 2008). Triazoles are 
synthesized by the cycloaddition of alkynes with azides 
catalyzed by Copper, which is called as Click chemistry coined 
 
 
by Sharpless (Rostovtsev 2002), has opened a new chapter in 
the area of glycol conjugates and macromolecules. Interactions 
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                             A B S T R A C T  
 

 

A concise enantioselective synthetic routes to two new series of bis(dioxolane)
derived 1,2,3-triazole derivatives have been developed. The enantiomeric precursors, 
bis(dioxolane)-glucose azide required for the synthesis are synthesized from the sa
precursor bis(dioxolane)-glucose. Various alkynes and enantiomeric azides undergo 
intermolecular [3+2] cycloaddition in the presence of Cu
1,2,3-triazoles at ambient temperature with good to excellent yield in respective s
routes.  
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Carbohydrates conjugated with heterocyclic compounds such 
., 2000). imidazoles 

., Terinek and Vasella,2005; M. Terinek and 
., 1997; Heightman 

dayand Vasella.  2000) and triazoles (Davis et 
) are biologically attractive 

motifs, because they are potent glycosidase inhibitors. In 
triazole derivatives are emerging as potential 

., 2004;Alvarez et al., 
., 1998). On the other hand, combination 

triazole structures has led to the 
flouring field of conjugates that are powerful pharmacophores 

10; Dondoni, 2007). 
triazoles are also regarded as 

important precursors to analogues of some alkaloid antibiotics 
et al., 2000; Flessner 

and Wong, 2000), glycose phosphorylase (Bokor et al., 2010) 
., 2008). Triazoles are 

synthesized by the cycloaddition of alkynes with azides 
catalyzed by Copper, which is called as Click chemistry coined  

by Sharpless (Rostovtsev 2002), has opened a new chapter in 
the area of glycol conjugates and macromolecules. Interactions 

of carbohydrates with proteins of target receptors are important 
in biological systems, since it increases the binding ability of 
ligands (Agre et al., 2016; Mishra 
2010). Besides, they increases the solubility of therapeutically 
active heterocyclic compounds in biological systems, which 
increases the penetration through biological membranes. Some 
biologically important sugar conjugates are given in Figure 1.
Recently, we have developed new synthetic methods for the 
synthesis of biologically important
(Lingaraju et al., 2012; Rajeev et. al., 2017; Ashwini 
2015; Swaroop et al., 2020; Rajeev 
2020). We have reported 1-
triazoles by Click chemistry as anticancer agent
inhibited histone deacetylases by inducing p21 and tubulin 
acetylation (Ashwini et al., 2015). In addition, a base induced 
click reaction is also reported for the synthesis of thiazoles 
from our laboratory (Lingaraju 
of this work, we herein report enantioselective routes for the 
synthesis of 4-(substituted)-1
yl)-2,2-dimethyltetrahydrofuro[2,3
1,2,3-triazoles via click reactions by copper catalyst.
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A concise enantioselective synthetic routes to two new series of bis(dioxolane)-glucose 
triazole derivatives have been developed. The enantiomeric precursors, 
glucose azide required for the synthesis are synthesized from the same 

glucose. Various alkynes and enantiomeric azides undergo 
intermolecular [3+2] cycloaddition in the presence of Cu-catalyst, to give enantiomeric 

triazoles at ambient temperature with good to excellent yield in respective synthetic 
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teins of target receptors are important 
in biological systems, since it increases the binding ability of 

., 2016; Mishra et al., 2003; Ferreira et al., 
2010). Besides, they increases the solubility of therapeutically 

compounds in biological systems, which 
increases the penetration through biological membranes. Some 
biologically important sugar conjugates are given in Figure 1. 
Recently, we have developed new synthetic methods for the 
synthesis of biologically important heterocyclic compounds 

., 2012; Rajeev et. al., 2017; Ashwini et al., 
Rajeev et al., 2020; Kiran et al., 
-(3-benzisoxazolyl)-4-aryl-1,2,3-

triazoles by Click chemistry as anticancer agents, which 
inhibited histone deacetylases by inducing p21 and tubulin 

., 2015). In addition, a base induced 
click reaction is also reported for the synthesis of thiazoles 
from our laboratory (Lingaraju et al., 2012).  In continuation 
of this work, we herein report enantioselective routes for the 

1-5-2,2-dimethyl-1,3-dioxolan-4-
dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl)-1H-

click reactions by copper catalyst. 
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Fig 1. Selected carbohydrate derived triazoles 
 

MATERIALS AND METHODS 
 

General  
 

The starting materials were commercially available and used 
as receivedwithout further purification. Reactions were 
monitoredby TLC and visualized under UV light. Melting 
points were melting points were determined on Selaco melting 
point apparatus and are uncorrected. NMR spectra were 
recorded on Brucker NMR spectrometer. Tetramethyl silane 
was used as reference and DMSO-d6 as solvent. HRMS spectra 
were recorded using Agilant Mass spectrometer. IR spectra 
were recorded on shimadzu IR spectrometer.  
 

General procedure for the synthesis of (3) 
 

A mixture 2 (35 g) and sodium azide (18.4 g) in DMF (400 
mL) was heated to 150°C for 10 h. The reaction mixture was 
cooled to room temperature and then added EtOAc (500 mL). 
The mixture was washed with water (500 mL), brine (500 
mL), dried and concentrated under vaccum. The crude was 
passed through silica gel to get the product 3 as colorless 
liquid. 1H NMR (DMSO, 400 MHz) δ 1.28 (6H, s), 1.35 (3H, 
s), 1.44 (3H, s), 3.58 (1H, q, J=4.8, 4.8 Hz), 3.80 (1H, q, 
J=5.2, 3.2 Hz), 3.90 (1H, q, J=6, 3.6 Hz), 4.06 (1H, q, J=6.8, 
1.6 Hz), 4.13 (1H, q, J=6.08, 6.08 Hz), 4.77 (1H, t, J=4.2 Hz), 
5.76 (1H, d, J=3.68 Hz); 13C NMR (DMSO, 100 MHz) δ 25.5, 
26.6, 61.8, 66.4, 75.7, 77.6, 80.7, 104.2, 109.4, 112.5; HRMS 
(ESI) [M+H]+ Anal. Calcd. for C12H19N3O5: 285.1325; Found: 
285.1325. HPLC = 99.35%.  
 

(3aR,6aS)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-
dimethyldihydrofuro[2,3-d][1,3]dioxol-6(3aH)-one (4) 
 

To a solution of diacetone-D-Glucose (50 g, 1.92 mol) in dry 
CH2Cl2 (650 mL), PDC (43.4 g, 1.15 mol) was added and 
acetic anhydride (65 mL) and heated to 45°C for 1 h. The 
reaction mixture was concentrated under vacuum and crude 
was residue purified by column chromatography over silica gel 
to give the product 5 as yellow liquid (47g). 1H NMR (DMSO, 
400 MHz) δ 1.16 (3H, s), 1.22 (3H, s), 1.36 (3H, s), 1.41 (3H, 
s), 1.89 (1H, s), 3.83 (1H, t, J=3.45 Hz), 3.95 (1H, q, J=7.05 
Hz, 1.38 Hz), 4.24-4.30 (1H, m), 4.53 (2H, t, J=2.96 Hz), 6.07 
(1H, d, J=4.47 Hz), 11.95 (1H, s). 13C NMR (DMSO, 100 
MHz) δ 25.5, 26.6, 64.8, 68.2, 77.9, 80.5, 107.7, 118.5, 119.5, 
203.6; HRMS (ESI) [M+H]+  Anal. Calcd. for C12H19O6: 
259.1182; Found: 259.1183. 
 

(3aR,6R,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-
dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (5) 
 

To a stirred solution of compound 5 (50g, 1.94 mol) in 80% 
MeOH:H2O, NaBH4 (50.2 g) was added in portions at 0°C and 
then allowed to stir at room temperature for 1 h. The reaction 
mixture was concentrated under vacuum, and the residue was 
extracted with EtOAc (500 mL). The organic layer was 
washed with water (500 mL), brine (500 mL) dried and 
concentrated to give compound as white solid (43g). 1H NMR 
(DMSO, 400 MHz) δ 1.22 (6H, s), 1.32 (3H, s), 1.44 (3H, s), 

3.33-3.86 (3H, m), 3.93 (1H, t, J=7.56 Hz), 4.21-4.24 (1H, m), 
4.46 (1H, t, J=4.12 Hz), 5.11 (1H, d, J=7.12 Hz), 5.66 (1H, d, 
3.6 Hz); 13C NMR (DMSO, 100 MHz) δ 25.5, 26.6, 67.0, 75.0, 
75.8,  80.0, 84.2, 109.6, 119.5, 121.9; Anal. Calcd. for 
C12H21O6:261.1338; Found: 261.1339. [α]= +33.79o / C=1.054 
/ T=23°C. 
 

(3aR,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-
dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl 
methanesulfonate (6) 
 

To a stirred solution of diacetone-D-Glucose (20g, 1.02 mol) 
in pyridine (80 mL) was added methane sulfonyl  chloride 
(16.2 mL) at 0°C and allowed to stir at room temperature for 
12 h. The reaction mixture was poured in to ice and filtered off 
the solid. The solid was washed repeatedly with water and 
dried under suction to give the compound 7 as white solid 
(20.5 g). 
 
1H NMR (DMSO, 400 MHz) δ 1.21 (6H, s), 1.16 (3H, s), 1.44 
(3H, s), 3.62-3.87 (2H, m), 4.02 (m, 2H), 4.16 (1H, s), 5.25 (s, 
1H), 6.26 (1H, s); 13C NMR (DMSO, 100 MHz) δ 25.5, 26.6, 
67.0, 75.0, 78.4, 84.0, 85.4, 109.6, 119.5, 121.9; HRMS (ESI) 
[M+H]+ Anal. Calcd. for C13H23O8S: 339.1114; Found: 
339.1116. 
 

(3aR,6S,6aR)-6-Azido-5-((R)-2,2-dimethyl-1,3-dioxolan-4-
yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxole (8) 
 

A mixture of compound 7 (20 g) and sodium azide (12.3 g) in 
DMF (220 mL) was heated to 150°C for 10 h. The reaction 
mixture was cooled to RT and then added EtOAc. The mixture 
was washed with water (250 mL), brine (250 mL), dried and 
concentrated under vacuum. The crude was passed through 
silica gel to give the product as colorless liquid. 1H NMR 
(DMSO, 400 MHz)  δ 1.25 (3H, s), 1.27 (3H, s), 1.40 (3H, s), 
3.79 (1H, q, J=5.32, 3.04 Hz), 4.01 (1H, q, J=3.12, 4.92 Hz), 
4.06 (1H, q, J=6.2, 2.2 Hz), 4.14 (1H, m), 4.25 (1H, d, J=3.12 
Hz), 5.83 (1H, d, J=3.6 Hz): 13C NMR (DMSO, 100 MHz)  δ 
25.6, 26.4, 26.8, 27.0, 66.0, 67.1, 73.0, 80.2, 83.2, 104.9, 
109.1, 111.8: HRMS (ESI) [M+H]+  Anal. Calcd. for 
C12H20N3O5:286.1403; Found: 286.1403. 
 

General procedure for the preparation of glucose conjugate 
1,2,3-triazoles 9a-g 
 

To a mixture of 3 (1 mmol) in isopropropyl alcohol (2 mL), 
was added different alkynes 8 (1.1 mmol), sodium ascorbate (1 
mmol) and CuI (0.2 mmol) was added and stirred the reaction 
mixture at room temperature for 8 h. Filtered the solid product 
and washed with excess water and dried under vacuum to give 
crude product which was purified by column chromatography. 
 

2-(1-((3aR,5S,6R,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-
yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl)-1H-
1,2,3-triazol-4-yl)cyclopentanol (9a) 
 
1H NMR (DMSO, 400 MHz)  δ 1.15 (3H, s), 1.16 (3H, s), 1.25 
(3H, s), 1.53 (3H, s), 1.66-1.68 (2H, m), 1.79-1.85 (4H, m), 
1.91-1.97 (2H, m), 3.49 (1H, q, J=5.6, 2.8 Hz), 3.95 (1H, q, 
J=6.8, 2.0 Hz), 4.15 (1H, t, J=6.0 Hz), 4.56 (1H, q, J=4.8, 5.2 
Hz), 5.91 (1H, d, J=3.6 Hz), 7.89 (1H, s); 13C NMR (DMSO, 
100 MHz)  δ 23.7, 23.8, 25.4, 26.8, 62.3, 65.6, 75.6, 77.6, 
77.9, 79.5, 104.5, 113.0, 121.9, 154.7; HRMS (ESI) [M+H]+  

Anal. Calcd. for C19H30N3O6:396.2135; Found: 396.2135. 
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1-(3aR,5S,6R,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-
2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl)-4-(3-
methoxyphenyl)-1H-1,2,3-triazole (9b) 
 
1H NMR (DMSO, 400MHz)  δ 1.17 (3H, s), 1.18 (3H, s), 1.25 
(3H, s), 1.57 (3H, s), 3.38 (1H, br), 3.81 (3H, br), 4.00 (1H, 
br), 4.24 (1H, br), 4.71 (1H, br), 4.89 (1H, br), 5.22 (1H, br), 
5.96 (1H, br), 6.91 (1H, br), 7.3-7.43 (3H, m), 8.69 (1H, s); 13C 
NMR (DMSO, 100 MHz)  δ 25.3, 26.4, 26.7, 26.8, 55.6, 62.7, 
65.8, 75.7, 77.4, 79.5, 104.7, 109.4, 110.9, 113.0, 113.9, 117.9, 
122.8, 130.5, 132.5, 146.2, 160.1; HRMS (ESI) [M+H]+  Anal. 
Calcd. for C21H28N3O6: 418.1978; Found: 418.1980. 
 

3-(1-((3aR,5S,6R,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-
yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl)-1H-
1,2,3-triazol-4-yl)phenol (9c) 
 
1H NMR (DMSO, 400MHz)  δ 1.14-1.23 (9H, m), 1.55 (3H, 
s), 3.31 (1H, br), 3.60 (1H, br), 3.98 (1H, br), 4.22 (1H, br), 
4.64 (1H, br), 4.87 (1H, br), 5.22 (1H, br), 5.93 (1H, br), 7.39-
7.47 (2H, m), 7.83-7.92 (2H, m), 8.79 (1H, s); 13C NMR 
(DMSO, 100 MHz)  δ 25.3, 26.4, 26.7, 26.82, 62.8, 65.9, 75.8, 
77.5, 79.5, 104.7, 109.4, 113.11, 123.3, 124.1, 125.2, 128.1, 
131.4, 133.5, 134.2, 145.0; HRMS (ESI) [M+H]+  Anal. Cald. 
for C20H26N3O6: 404.1822; Found: 404.1822. 
 

4-([1,1'-Biphenyl]-4-yl)-1-((3aR,5S,6R,6aR)-5-((R)-2,2-
dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-
d][1,3]dioxol-6-yl)-1H-1,2,3-triazole (9d) 
 
1H NMR (DMSO, 400 MHz) δ  1.09-1.24 (9H, m), 1.57 (3H, 
s), 3.61 (1H, t, J=7.2 Hz), 3.99 (1H, t, J=10.36 Hz), 4.23 (1H, 
d, J=7.4 Hz), 4.69 (1H, q, J=6.28, 6.08 Hz), 4.89 (1H, br), 5.24 
(1H, q, J=6.52, 6.64 Hz), 5.95 (1H, d, J=7.4 Hz); 13C NMR 
(DMSO, 100 MHz)  δ 25.3, 26.4, 26.81, 65.8, 75.8, 104.7, 
109.4, 113.1, 126.1, 127.0, 127.6, 129.4, 139.9; HRMS (ESI) 
[M+H]+  Anal. Calcd. for C26H30N3O5: 464.2185; Found: 
464.2187. 
 

4-(1-((3aR,5S,6R,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-
yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl)-1H-
1,2,3-triazol-4-yl)aniline (9e) 
 
1H NMR (DMSO, 400MHz) δ  1.18-1.25 (9H, m), 1.56 (3H, 
s), 3.55 (1H, br), 3.98 (1H, br), 4.24 (1H, br), 4.70 (1H, br), 
4.75 (1H, br), 4.87 (1H, br), 5.16 (2H, br), 5.94 (1H, br), 6.61 
(1H, br), 7.51 (1H, br), 8.34 (1H, s); 13C NMR (DMSO, 100 
MHz)  δ 25.4, 26.4, 26.8, 26.8, 65.5, 75.6, 77.3, 79.56, 104.6, 
109.4, 113.0, 126.6; HRMS (ESI) [M+H]+  Anal. Calcd. for 
C20H27N4O5: 403.1981; Found: 403.1983. 
 

1-((3aR,5S,6R,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-
2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl)-4-(2-
(trifluoromethyl)phenyl)-1H-1,2,3-triazole (9f) 
 
1H NMR (DMSO, 400 MHz) δ 1.14 (3H, s), 1.16 (3H, s), 1.25 
(3H, s), 1.52 (3H, s), 3.48 (1H, br), 3.97 (1H, br), 4.21 (1H, 
br), 4.63 (1H, br), 4.90 (1H, br), 5.20 (1H, br), 7.62-7.86 (4H, 
m), 8.32 (1H, s); 13C NMR (DMSO, 100 MHz)  δ 25.4, 26.3, 
26.6, 26.8, 62.6, 65.9, 75.7, 77.8, 79.3, 104.7, 109.4, 113.0, 
124.8, 126.8, 129.3, 129.7, 132.2, 133.1, 143.4; HRMS (ESI) 
[M+H]+  Anal. Calcd. for C21H25F3N3O5: 456.1746; Found: 
456.1748. 
 

1-((3aS,5S,6R,6aS)-5-(2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-
dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl)-4-(thiophen-
3-yl)-1H-1,2,3-triazole (9g) 
 

1H NMR (DMSO, 400MHz) δ  1.15-1.23 (9H, m), 1.54 (3H, 
s), 3.58 (1H, t, J=7.48 Hz), 3.97 (1H, t, J=9.76 Hz), 4.21 (1H, 
d, J=5.5 Hz), 4.64 (1H, br), 4.87 (1H, br), 5.93 (1H, br), 7.51 
(1H, d, J=4.41 Hz), 7.63 (1H, br), 7.84 (1H, br), 8.51 (1H, s); 
13C NMR (DMSO, 100 MHz)  δ 25.3, 26.4, 26.8, 26.8, 62.6, 
65.8, 75.7, 77.5, 79.5, 104.6, 109.4, 113.0, 121.2, 122.2, 126.3, 
127.6, 132.5; HRMS (ESI) [M+H]+  Anal. Calcd. for 
C18H24N3O5S: 394.1437; Found: 394.1439. 
 

General procedure for preparation of glucose conjugate 
1,2,3-triazoles (10a-g)  
 

To a mixture of azide scaffold (1 mmol) in IPA, was added 
different alkynes (1.1 mmol), sodium ascorbate (1 mmol) and 
CuI (0.2 mmol) was added and stirred the reaction mixture at 
RT for 8h.Filtered the solid product and washed with excess 
water and dried under vacuum to give crude product which 
was purified by column chromatography.  
 

2-(1-((3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-
yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl)-1H-
1,2,3-triazol-4-yl)cyclopentanol (10a) 
 
1H (DMSO, 400 MHz) δ  1.15 (3H, s), 1.31 (3H, s), 1.33 (3H, 
s), 1.50 (3H, s), 1.68 (2H, br), 1.81-1.83 (4H, m), 1.91-1.97 
(2H, m), 3.25-3.30 (1H, q, J=6.0, 7.24 Hz), 3.51-3.58 (2H, m), 
4.32 (1H, q, J=3.76, 3.52 Hz), 5.06 (2H, d, J=1.96 Hz), 5.30 
(1H, d, J=3.8 Hz), 6.16 (1H, d, J=3.64 Hz), 7.82 (1H, s); 13C 
NMR (DMSO, 100 MHz)  δ  23.7, 25.6, 26.4, 27.0, 64.9, 65.9, 
72.8, 80.0, 83.7, 105.9, 109.0, 112.9, 154.7; HRMS (ESI) 
[M+H]+  Anal. Calcd. for C19H30N3O6:396.2135; Found: 
396.2135. 
 

1-((3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-
2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl)-4-(3-
methoxyphenyl)-1H-1,2,3-triazole (10b) 
 
1H (DMSO, 400 MHz) δ  1.13 (3H, s), 1.33 (3H, s), 1.36 (3H, 
s), 1.52 (3H, s), 3.33 (1H, t, J=3.48 Hz), 3.68 (2H, d, J=5.68 
Hz), 3.82 (3H, s), 4.35 (1H, t, J=4.08 Hz), 5.11 (1H, d, J=3.44 
Hz), 5.31 (1H, d, J=3.6 Hz), 6.25 (1H, d, J=3.4 Hz), 6.93 (1H, 
q, J=2.4, 5.76 Hz), 7.36-7.46 (3H, m), 8.51 (1H, s); 13C NMR 
(DMSO, 100 MHz)  δ 25.5, 26.4, 27.0, 27.1, 55.6, 65.4, 66.3, 
72.5, 79.9, 83.7, 105.8, 109.2, 111.0, 112.2, 114.2, 118.1, 
123.0, 130.6, 132.1, 146.5, 160.2; HRMS (ESI) [M+H]+  Anal. 
Calcd. for C21H28N3O6: 418.1978; Found: 418.1980. 
 

3-(1-((3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-
yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl)-1H-
1,2,3-triazol-4-yl)phenol (10c) 
 
1H (DMSO, 400 MHz) δ  1.12 (3H, s), 1.32 (3H, s), 1.34 (3H, 
s), 1.51 (3H, s), 3.32-3.34 (1H, m), 3.67 (2H, d, J=5.6 Hz), 
4.35 (1H, q, J=3.6, 4 Hz), 5.10 (1H, d, J=3.6 Hz), 5.31 (1H, d, 
J=3.6 Hz), 7.39-7.51 (2H, m), 7.84-7.94 (2H, m), 8.60 (1H, s); 
13C NMR (DMSO, 100 MHz)  δ 25.5, 26.4, 27.0, 27.1, 65.5, 
66.3, 72.5, 79.9, 83.7, 105.8, 109.2, 112.2, 123.6, 124.2, 125.4, 
128.3, 131.4, 132.9, 134.2, 145.3; HRMS (ESI) [M+H]+  Anal. 
Calcd. for C20H26N3O6: 404.1822; Found: 404.1822. 
 

4-([1,1'-Biphenyl]-4-yl)-1-((3aR,5S,6S,6aR)-5-((R)-2,2-
dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-
d][1,3]dioxol-6-yl)-1H-1,2,3-triazole (10d) 
 
1H (DMSO, 400 MHz) δ  1.12 (3H, s), 1.21 (3H, s), 1.32 (3H, 
s), 1.51 (3H, s), 3.31-3.35 (1H, m), 3.66 (2H, d, J=7.48 Hz), 
4.35 (1H, q, J=4.84, 5.48 Hz), 5.12 (1H, d, J=4.76 Hz), 5.32 
(1H, d, J=4.92 Hz), 6.24 (1H, d, J=4.72 Hz), 7.36-7.39 (1H, 
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m), 7.44-7.49 (2H, m), 7.69-7.78 (4H, m), 7.95 (2H, d, 
J=10.96 Hz), 8.53 (1H, s); 13C NMR (DMSO, 100 MHz)  δ 
25.0, 26.0, 26.5, 26.6, 65.0, 65.8, 72.0, 79.5, 83.3, 105.4, 
108.7, 111.7, 122.5, 125.8, 126.5, 127.2, 127.6, 128.98, 129.4, 
139.5, 139.7, 145.8; HRMS (ESI) [M+H]+  Anal. Calcd. for 
C26H30N3O5: 464.2185; Found: 464.2187. 
 

4-(1-((3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-
yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl)-1H-
1,2,3-triazol-4-yl)aniline (10e) 
 
1H (DMSO, 400 MHz) δ  1.11 (3H, s), 1.30 (3H, s), 1.33 (3H, 
s), 1.49 (3H, s), 3.61-3.64 (2H, m), 4.31 (1H, q, J=4.84, 5.4 
Hz), 5.05 (1H, d, J=4.76 Hz), 5.23-5.24 (3H, m), 6.20 (2H, d, 
J=11.4 Hz), 7.48 (2H, d, J=11.28 Hz), 8.15 (1H, s); 13C NMR 
(DMSO, 100 MHz)  δ 25.5, 26.4, 27.0, 27.1, 65.2, 66.2, 72.5, 
80.0, 83.8, 105.8, 109.1, 112.1, 114.4, 118.3, 120.6, 126.7, 
147.6, 149.3; HRMS (ESI) [M+H]+  Anal. Calcd. for 
C20H27N4O5: 403.1981; Found: 403.1983. 
 

1-((3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-
2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl)-4-(2-
(trifluoromethyl)phenyl)-1H-1,2,3-triazole (10f) 
 
1H (DMSO, 400 MHz) δ  1.12 (3H, s), 1.32 (3H, s), 1.33 (3H, 
s), 1.50 (3H, s), 3.21 (1H, br), 3.63-3.73 (2H, m), 4.32 (1H, q, 
J=5.04, 5.44 Hz), 5.17 (1H, d, J=4.76 Hz), 5.44 (1H, d, J=5.04 
Hz), 6.19 (1H, d, J=4.72 Hz), 7.64-7.66 (1H, m), 7.75 (2H, t, 
J=8.72 Hz), 7.86 (1H, d, J=10.4 Hz), 8.24 (1H, s); 13C NMR 
(DMSO, 100 MHz)  δ 25.3, 26.4, 26.9, 27.0, 65.2, 66.5, 72.4, 
80.4, 83.6, 106.0, 109.2, 112.2, 125.9, 126.2, 126.7, 126.8, 
127.2, 129.5, 132.3, 133.2, 143.3; HRMS (ESI) [M+H]+  Anal. 
Calcd. for C21H25F3N3O5: 456.1746; Found: 456.1748. 
 

1-((3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-
2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl)-4-
(thiophen-3-yl)-1H-1,2,3-triazole (10g) 
 
1H (DMSO, 400 MHz) δ  1.12 (3H, s), 1.32 (3H, s), 1.34 (3H, 
s), 1.51 (3H, s), 3.31 (1H, s), 3.67 (2H, d, J=5.72 Hz), 4.33 
(1H, q, J=3.76, 4.16 Hz), 5.09 (1H, d, J=3.6 Hz), 5.30 (1H, d, 
J=3.76 Hz), 6.21 (1H, d, J=3.2 Hz), 7.53 (1H, q, J=1.2, 3.8 
Hz), 7.65 (1H, q, J=2.92, 2.04 Hz), 7.88 (1H, q, J=1.2, 1.72 
Hz), 8.35 (1H, s); 13C NMR (DMSO, 100 MHz)  δ 25.5, 26.4, 
27.0, 27.1, 65.3, 66.3, 66.3, 72.5, 79.9, 83.8, 105.8, 109.2, 
112.2, 121.7, 122.6, 126.2, 127.7, 132.1, 143.5; HRMS (ESI) 
[M+H]+  Anal. Calcd. for C18H24N3O5S: 394.1437; Found: 
394.1439. 
 

RESULTS AND DISCUSSION 
 

The required substrate (3aS,6R,6aS)-6-azido-5-((S)-2,2-
dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-
d][1,3]dioxole 3 was synthesized according to sequence of 
reactions given in Scheme 1. The (3aS,6S,6aS)-5-((S)-2,2-
dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-
d][1,3]dioxol-6-ol 1 was mesylated with methanesulfonyl 
chlroride in dichloromethane in pyridine gave (3aS,6S,6aS)-5-
((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-
dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl 
methanesulfonate 2.Nucleophilic substitution of mesylate by 
azide by heating at 120°C in DMF gavethe required substrate 
3. 
 

 

 

Scheme 1. Synthesis of (3aS,6R,6aS)-6-azido-5-((S)-2,2-
dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-
d][1,3]dioxole 3 
 
The enantiomer of 3, 7 was synthesized as per Scheme 2. The 
1 was oxidized with pyridinium dichromate to get ketone 4, 
which was reduced with sodium borohydride. This, furnished a 
enantiomer of 1, (3aR,6R,6aR)-5-((S)-2,2-dimethyl-1,3-
dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-
6-ol 5. Mesylation of 5 formed an intermediate 6, which upon 
nucleophilic substitution by azide afforded a enantiomer of 
3,(3aS,6S,6aS)-6-azido-5-((S)-2,2-dimethyl-1,3-dioxolan-4-
yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxole 7. 
 

 
 

Scheme 2. Synthesis of (3aS,6R,6aS)-6-azido-5-((R)-2,2-
dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-
d][1,3]dioxole 7 
 

In order to explore the optimal reaction conditions for the 
synthesis of glucosyl-1,2,3-triazoles, we considered [3+2] 
cycloaddition reaction of glycosyl azide 3 and biphenyl 
acetylene 8d  as a model reaction (Scheme 3, Table 1). Thus, 
reaction of 3 with biphenyl acetylene 8d, in the presence of 
CuI (5 mol%) in a reducing atmosphere of sodium ascorbate 
(20 mol%) in t-BuOH:H2O (10:1) at ambient temperature 
yielded  traces of required triazole 9d after 36 h (Table 1, entry 
1). Increase in CuI quantity to 40 mol% at constant 
concentration of sodium ascorbate did not improve the yield 
(Table 1, entries 2-4). Further, increase in concentration of 
sodium ascorbate at constant CuI quantity gradually increased 
the yield and simultaneously reduced the reaction time (Table 
1, entries 5-8). Thus, a maximum yield of product 9d was 
obtained when 100 mol% of sodium ascorbate was used (Table 
1, entry 8). Increase in catalyst concentration did not improve 
the yield (Table 1, entry 9).  
 

 
 

Scheme 3. Cycloaddition reaction of glycosyl azide 1 and 
biphenyl acetylene 2d 
 

Table 1 Optimization of reaction conditions for the synthesis 
of 9d 

 

Entry 
Sodium ascorbate  

(mol %) 
CuI (mol %) Time (h) Yield (%) 

1 20 5 36 trace 
2 20 10 21 trace 
3 20 20 19 trace 
4 20 40 14 trace 
5 40 10 21 8% 
6 60 10 19 21% 
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7 80 10 14 49% 
8 100 10 9 81% 
9 100 20 9 80% 

 

After the optimization of reaction condition, we next explored 
the generality of the protocol for the synthesis triazoles by the 
cycloaddition of enantiomeric azides with alkynes (Scheme 4, 
Table 2). Thus, azide 3 undergo cycloaddition with various 
monosubstituted alkynes (cycloalkynes, aryl, biaryl and 
hetaryl) containing active functional groups like hydroxyl, 
methoxy, chloro, amino and trifluromethyl furnished 
respective triazoles 9a-g in 49-87% yield (Table 2, entries 1-
7). On the other hand, the enantiomeric triazoles 10a-g were 
synthesized under the same reaction conditions in 52-91% 
yield by the cycloaddition of enantiomeric azide 7 with alkyne 
8 (Table 2, entries 1-7). Thus, the reactions were successful 
with various alkynes bearing electron donating and 
withdrawing groups.  
 

 
 

Scheme 4. Synthesis of enantiomeric glucosyl-triazoles 
 

Table 2 Synthesis of triazole enantiomers 
 

 
 

CONCLUSION 
 

In conclusion, we have designed convenient protocols for 
highly enantioselective synthesis of 1-((3aR,5S,6S,6aR)-5-
((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-
dimethyltetrahydrofuro[2,3- d][1,3]dioxol-6-yl)-4-substituted-
1H-1,2,3-triazoles and 1-((3aR,5S,6R,6aR)-5-((R)-2,2- 
dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-
d][1,3]dioxol-6-yl)-4-substituted- 1H-1,2,3-triazoles by 
adopting  Huisgen cycloaddition of azido glucose derivatives 
(3 and 7) with different alkynes. Using these synthetic routes, 
enantiomeric glucosyl 1,2,3,-triazole epimers are smoothly 
prepared in good yield under green reaction conditions. 
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