International Journal of Current Advanced Research

ISSN: O: 2319-6475, ISSN: P: 2319-6505, Impact Factor: 6.614 Available Online at www.journalijcar.org Volume 9; Issue 01 (C); January 2020; Page No.20989-20992 DOI: http://dx.doi.org/10.24327/ijcar.2020.20992.4112

COMPARATIVE STUDY OF NORMAL AMNIOTIC FLUID INDEX VERSUS DECREASED AMNIOTIC FLUID INDEX MEASUREMENT IN PREDICTING PERINATAL OUTCOME AT OR BEYOND 40 WEEKS OF GESTATION

Nasreen Noor*, Seema Amjad Raza, Shazia Parveen, Mohd Khalid and Syed Manazir Ali

Department of Obstetrics and Gynaecology, Radiodiagnosis and Paedriatics J.N.M.C.H., A.M.U., Aligarh

ARTICLE INFO	A B S T R A C T
Article History: Received 14 th October, 2019 Received in revised form 29 th November, 2019 Accepted 05 th December, 2019 Published online 28 th January, 2020	Objectives: To compare normal amniotic fluid index versus decreased amniotic fluid index measurement for predicting perinatal outcomes at or beyond 40 weeks of gestation. Material and Methods: The present study was a prospective observational study and includes 120 normal antenatal women at gestational age 40 weeks or beyond (By Last Menstrual Period/1stTrimister Scan). After Institutional Ethics Committee approval all recruited women was assessed at the 3rd trimester visit for baseline demographic and
Fublished online 28 January, 2020	
Key words:	ultrasonography for amniotic fluid index (AFI) .Based on ultrasonography measurement of
Amniotic fluid index,perinatal outcome,oligohydramnios	AFI women were divided into 2 groups . The correlation of normal amniotic fluid index versus decreased amniotic fluid index measurement with perinatal outcome were computed for the two groups. Group I - Women having Normal AFI Group II - Women having Decreased AFI Results: In Group I 31(34.44%) women were induced and in Group II 30 (100%) were induced for oligohydramnios. 65 women (72.22%) Vs10 women (33.33%) had normal vaginal delivery and 25 women(27.28%) Vs 20 women (66.67%) had undergone LSCS in Group I and Group II respectively. Higher rate of LSCS was observed in Group II and the results were significant('p'<0.05) .Significant difference between the rate of LSCS for fetal distress was observed between Group II. There was a significant difference for presence of meconium (33.33%) in Group II compared to Group I. The Mean \pm SD of Apgar score at 5 minute was 8.15 ± 0.36 Vs 8.13 ± 0.34 in the two groups, respectively ('p' > 0.944).
	Conclusion: Decreased Amniotic fluid index (AFI) excessively characterizes patients as having oligohydramnios, leading to an increase in mortality.

Copyright© 2020 Nasreen Noor et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Amniotic fluid assessment by ultrasound is one of the important tools in assessing the fetal health in all risk categories especially beyond the period of viability by P.Nash^[1].Delivery beyond 42 weeks is associated with a fourfold increase in death in utero, as well as a threefold increase in neonatal death compared with delivery at term by Crowley P^[2]. In addition to mortality, there is an increased risk of meconium aspiration syndrome, neonatal seizures and long term handicap by Minchom P^[3].Assessment of amniotic fluid volume (AFV) is an integral part of antenatal ultrasound evaluation during screening exams, targeted anatomy examinations, and in tests assessing fetal well-being. Abnormal AFV has been associated with an increased risk of perinatal mortality and several adverse perinatal outcomes, including premature rupture of membranes (PROM),

*Corresponding author: Nasreen Noor Department of Obstetrics and Gynaecology J.N.M.C.H., A.M.U., Aligarh fetal abnormalities, abnormal birth weight, and increased risk of obstetric interventions by Harman CR^[4]. The ultimate goal of antepartum surveillance program is to improve perinatal outcome and to decrease intrauterine fetal demise besides prevention of maternal morbidity and mortality by Yeo *et al.*^[5], R.Liston *et al*^[6]. A fetus in distress should be identified at the earliest so that timely delivery will not only salvage the fetus but also prevent long term neurological impairments such as injury to fetal central nervous system by A. A. Baschatet $al^{[7]}$. These risk increases from the expected date of confinement (40 weeks of gestation) as placental insufficiency and postmaturity (greater than 42 weeks of gestation) are associated with an exponential increase in the risk of perinatal death by Bergjsø^[8]Though there are several ways by E. A. Dubil^[9]to assess quantity of amniotic fluid ranging from clinical palpation to measurement of single deepest vertical pocket A.F.Nabhan *et al.*^[10], amniotic fluid index (AFI) by four-quadrant technique as described by Phelan et al.^[11]. At term, oligohydramnios increases the risk of labor induction, Comparative Study of Normal Amniotic Fluid Index Versus Decreased Amniotic Fluid Index Measurement in Predicting Perinatal Outcome at or Beyond 40 Weeks of Gestation

the deceleration in fetal heart rate (FHR) tracings during labour, and recourse to cesarean delivery. Its effect on adverse neonatal outcome is less clearly documented by Locatelli *et al.* ^[12]. Thus, the present study was carried out in an effort to compare normal Amniotic Fluid Index with decrease amniotic fluid index with perinatal outcome.

MATERIAL AND METHODS

The present study was a prospective observational study and includes120 pregnant women with known last menstrual period, history of regular menstruation, singleton pregnancy, gestational age from 40wks or beyond. The exclusion criteria were history of gestational hypertension, diabetes mellitus, intrauterine growth restriction, hydrops fetalis, congenital malformations, twins, polyhydramnios and premature rupture of membranes. After approval by Institutional Ethics Committee all recruited women were observed for baseline demographic and obstetric data including age, parity and past medical events at first antenatal visit. After taking a detailed history and examination all women provided an informed written consent and underwent ultra sound evaluation for Amniotic Fluid index (AFI) .The women were divided into 2 Groups based on measurement of AFI ultrasonologically

Group I- Women having Normal AFI **Group II-** Women having Decreased AFI

The Primary outcome measures were presence of meconium, ,rate of diagnosis of oligohydramnios, Apgar score at 1 and 5 minutes, birth weight, admission to NICU, neonatal morbidity and mortality and number of perinatal death while secondary outcome were induction of labor, mode of delivery andrate of caesarean section for fetal distress. The correlation of Amniotic fluid index with perinatal outcome were computed for the two groups. 'P' values of less than 0.05 were considered statistically significant

RESULTS

In the present study, 120 antenatal women were included after fulfilling the inclusion and exclusion criteria. The women were divided into two Groups based on measurement of AFI ultrasonologically. Maternal baseline characteristics were similar between the two groups in terms of age, parity and gestational age (Table 1). In Group I, out of 90 women about 31(34.44%) were induced and 59(65.56%) women spontaneously progressed into labor. In Group II, 30(100%) women were induced for oligohydramnios diagnosed on the basis of decreased AFI (<5cm). Hence AFI increases the rate of diagnosis of oligohydramnios and labor induction (Table 2). Our study shows that in Group I 72.22% (65women) had normal vaginal delivery and 27.28%(25women)undergone LSCS, while in Group II 33.33% (10 women) had vaginal delivery and 66.67% (20 women) had undergone LSCS. There is a significant difference in mode of delivery between the two groups, i.e. more women undergone LSCS in Group II (decreased AFI) in comparison to Group I (normal AFI) (Table 3).Asshown in (Table 4) there was a significant difference in the rate of LSCS between the two groups .i.e. a higher rate of LSCS for fetal distress is observed in Group II.

The mean birth weight in our study was 2.96 ± 0.36 and there was no significant difference between the birth weights of the two groups. There is a significant difference between the

groups with about 33.33% presence of meconium in Group II i.e. patients having decreased AFI. The Mean±SD of Apgar Score at 1 minute was7.10±0.30 and at 5 minutes was8.14±0.355.There was no significant difference between the groups for Apgar Score (p=0.9).In our study, 2 neonates were admitted in NICU and died later due to valvularheart disease. However there was no statistical difference between the groups (p=0.7) (Table 5)

Table 1 Demographic profile of the study subjects

			5 5	
Parameters	Group I (n= 90)	Group II (n=30)	ʻp' value	
Age (years)				
	24.63±4.13	24.00±3.09	0.57	
(Mean ±SD)				
Gravidity	39 (43.3%)	10 (400/)		
Primi	51 (56.7%)	12 (40%)	0.9	
Multi	· · · ·	18(60 %)		
Gestational age				
(weeks)	66 (73.3)	27(90)		
>40wks		<		
>41wks	14(15.6)	019(3.3)		
>42wks	10(11.1)	02(6.7)		

Table 2 Rate of diagnosis of Oligohydramnios and

Induction of	Induction of Group I (n= 90)		Group II (n=30)		'p' value
Labour -	No.	%	No.	%	-
Yes	31	34.44	30	100	0.0001
No	59	65.56	00	000	0.0001
Total	90	100	30	100	

Table 3 Mode of Delivery

Mode of	Group (n= 90)		Group II (n=30)	
Delivery	No.	%	No.	%
VD	65	72.22	10	33.33
LSCS	25	27.78	20	66.67
Total	90	100	30	100

 Table 4 Indications for LSCS

Indication for	Gro	oupI	GroupII	
LSCS	No.	(%)	No.	(%)
Fetal Distress with MSAF	8	32	10	50
Fetal Distress with non reassuring CTG	8	32	06	30
NPOL	5	20	02	10
Failed Induction	4	16	02	10
Total	25	100	20	100

 Table 5 Neonatal Outcome

Neonatal Outcome	Group Ia	GroupIb	Pvalue	
Birthweight	2.96	2.99	0.6	
Meconium	8	9	0.1	
Apgar Score <7at 5mins	0	0	0.9	
NICUAdmission	1	1	0.7	
MAS	0	0	00	
Neonatal				
Morbidity &	1	1	0.7	
Mortality				
PerinatalDeath	1	1	0.7	

DISCUSSION

In the present study, total of 120 pregnant women were evaluated. They were randomly divided into two Groups: 90 women in Group I, 30 women in Group II, The study groups were similar in view of demographic characteristics including maternal age, gravidity and gestational age.

In Group I, out of 90 women about 31(34.44%) cases were induced. In Group II, 30(100%) women were induced for oligohydramnios diagnosed on the basis of decreased AFI (<5cm). Our study is in accordance with AF Nabhan^[10]and S.Kehl et ^[13] and they also concluded that use of AFI increased the rate of diagnosis of oligohydramnios and labour induction for oligohydramnios without improving perinatal outcome. AF Nabhan^[10] states that the AFI method for fetal surveillance almost doubles the risk for induction of labour . It was observed in comparing Group I and Group II that there was significant difference in mode of delivery. AF Nabhan^[10] in Cochrane systematic review observed that when AFI was used more women had caesarean delivery for fetal distress i.e. (RR 1.46; 95% CI 1.08 to 1.96) without any improvement in perinatal outcomes. In comparing Group I and Group II there was a significant difference in the rate of LSCS between the two Groups .i.e. a higher rate of LSCS for fetal distress was observed in Group II('p'= 0.001). Our findings is in accordance with Cochrane Systematic Review and S.Kehl et $al^{[13]}$ Moses *et al*¹⁴ study overall rate of caesarean deliveries for fetal distress was 4.8% and out of which 51% were in AFI group and 39% in MVP group and there was no difference in the neonatal outcomes for both the groups. There was a significant difference between Group I and II as 33.33% women had presence of meconium in Group II (decreased AFI) ('p'=0.001).SAFE Trial observed no difference in presence of meconium between the two groups. Our results are similar to S.Kehl et al^{13} who observed no difference in presence of meconium and birth weight between the two groups. However, Moses *et al*¹⁴ observed that there was no difference in the rate of meconium being present, but among the neonates with meconium, there was a higher proportion of thick meconium observed in the MVP monitored group. The mean birth weight in our study was 2.96±0.36. There was no significant difference between the birth weights of the two groups('p'=0.650). There was no significant difference between the groups for Apgar Score at 1 minute and 5 minutes.NICU admission was 1.1% Vs 0% in Group I and Group II respectively (p > 0.05). There was no statistical difference between the groups. (p=0.722)There were two neonatal death due to valvular heart disease.^[15] However there was no statistical difference between the groups. (p=0.722)

CONCLUSION

Amniotic fluid index compared with the maximal vertical pocket excessively characterizes patients as having oligohydramnios, leading to anincrease inobstetric interventions, without any documented improvement inperinatal mortality and morbidity However, there was no significant difference in predictability of cesarean section for fetal distress, low Apgar score. Appropriately designed and powered studies are needed to determine the best method to evaluate the amniotic fluid volume.

Conflict of Interest

NIL

Authors contributions: All authors contributed equally in writing, editing, proof reading the manuscript, the statistical analysis was done by Dr Seema Amjad Raza.

Acknowledgement

Special thanks to all patients who participated in this study and also to the faculty of Department of Obstetrics and Gynaecology, Department of Radio diagnosis and Department of Pedriatics who helped and contributed in this study J.N.M.C, A.M.U, Aligarh, U.P.-2002001

References

- 1. P. Nash, "Amniotic fluid index," Neonatal Network, vol. 32, no. 1,pp. 46–49, 2013.
- Crowley P. Post-term pregnancy: induction or surveillance? In: Chalmers I, Enkin M, Keirse MJNC, editors. Effective Care in Pregnancy and Childbirth. Oxford: Oxford University Press, 1989:776–791.
- 3. Minchom P, Niswander K, Chalmers I, *et al.* Antecedents andoutcome of very early neonatal seizures in infants born at or afterterm. Br J ObstetGynaecol1987;94:431–439.
- 4. Harman CR. Amniotic fluid abnormalities. SeminPerinatol.2008;32(4):288–294.
- 5. Yeo, M. G. Ross, and A. M. Vintzileos, "Antepartum and intrapartum surveillance of the fetus and the amniotic fluid," in Clinical Obstetrics: The Fetus& Mother, pp. 586–606, John Wiley & Sons, 3rd edition, 2008.
- 6. R. Liston, D. Sawchuck, and D. Young, "Fetal health surveillance: antepartum and intrapartum consensus guideline," Journal of Obstetrics and Gynaecology Canada, vol. 29, supplement 4, no. 9, pp. S3–S56, 2007.
- A.A. Baschat, R. M. Viscardi, B. Hussey-Gardner, N. Hashmi, and C. Harman, "Infant neurodevelopment following fetal growth restriction: Relationship with antepartum surveillance parameters," Ultrasound in Obstetrics &Gynecology, vol. 33, no. 1, pp. 44– 50,2009.
- Bergjsø T. Post-term pregnancy. In: Studd J, editor. Progress in Obsterics and Gynaecology. London: Churchill Livingstone, 1985:121–133.
- 9. E. A. Dubil, "Amniotic fluid as a vital sign for fetalwellbeing,"AJUM, vol. 16, no. 2, pp. 62–70, 2013.
- A. F. Nabhan and Y. A. Abdelmoula, "Amniotic fluid index versussingle deepest vertical pocket as a screening test for preventingadverse pregnancy outcome," The Cochrane Database of Systematic Reviews, no. 3, Article ID CD006593, 2008.
- J. P. Phelan, M. O. Ahn, C. V. Smith, S. E. Rutherford, and E. Anderson, "Amniotic fluid index measurements during pregnancy," Journal of Reproductive Medicine for the Obstetrician and Gynecologist, vol. 32, no. 8, pp. 601–604, 1987. 12
- Locatelli A, Vergani P, Toso L, Verderio M, Pezzullo JC, Ghidini A. Perinatal outcome associated with oligohydramnios in uncomplicated term pregnancies. Arch Gynecol Obstet. 2004;269(2):130–133 S.
- 13. Kehl, A. Schelkle, A. Thomas *et al.* Single deepest vertical pocket or amniotic fluid index as evaluation test for predicting adverse pregnancy outcome (SAFE trial):

15. Nasreen Noor, Seema Amjad Raza, Shazia Parveen,

Mohammad Khalid, Syed Manazir Ali Amniotic fluid

index versus maximum vertical pocket measurement in

predicting perinatal outcome at 40 weeks or beyond Int

2018

Reprod Contracept Obstet Gynecol.

a multicenter, openlabel, randomized controlled trial. Ultrasound Obstet Gynecol 2016; 47: 674–679.

14. Moses J, Doherty D, Magann EF, Chauhan SP, Morrison JC. A randomized clinical trial of the intrapartum assessment of amniotic fluid volume: amniotic fluid index versus the single deepest pocket technique. Am J Obstet Gynecol 2004; 190:1564–156

How to cite this article:

Nasreen Noor *et al* (2020) 'Comparative Study of Normal Amniotic Fluid Index Versus Decreased Amniotic Fluid Index Measurement in Predicting Perinatal Outcome at or Beyond 40 Weeks of Gestation', *International Journal of Current Advanced Research*, 09(01), pp. 20989-20992. DOI: http://dx.doi.org/10.24327/ijcar.2020.20992.4112

J

Dec;7(12):4887-4890